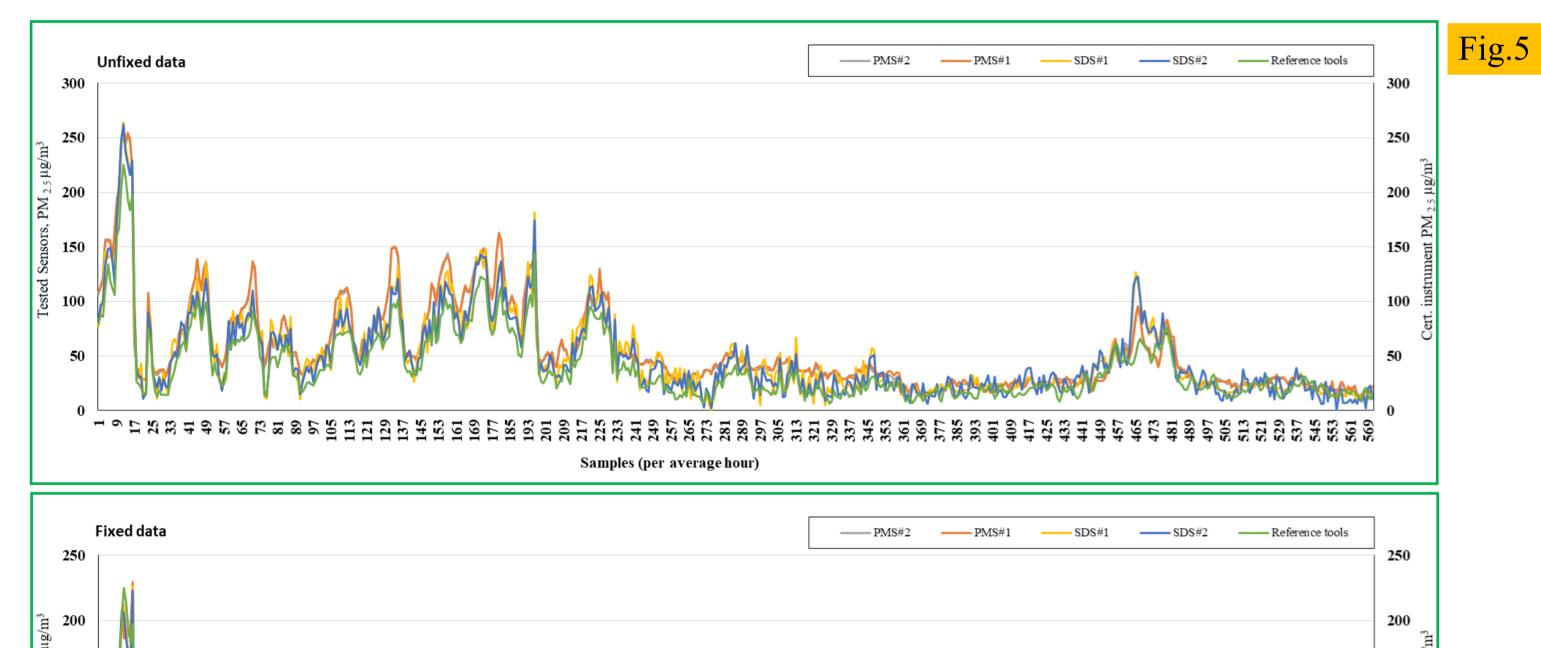


Small data logger development for particulate matter measurement Mahidol University: Salaya campus

Varong Boonchirdchoo and Sureerat Thongprapha **Faculty of Environment and Resource Studies, IT section.**

Questions Introduction • Maintaining ambient air quality at an appropriate level is a great challenge that our society • How long the low-cost sensors can operate wherever in an is facing. Most of the pollutants produced by human activities are particulate matter (PM), ambient environment? especially $PM_{2.5}$ (1), which cause a lot of health effects, such as respiratory illness and • How is the low-cost sensors accuracy and precision? cardiomegaly (2)(3)(4). • What is the limitation of the detection of low-cost • There is a high demand that is increasing for a $PM_{2.5}$ instrument with accuracy and sensors? precision, but most of products are expensive, this limits their availability for research use. • Can the low-cost sensor be used for monitoring $PM_{2.5}$? • The lack of $PM_{2.5}$ instrument causes a small area gap that creates miscalculations to occur when modeling or interpolating within spatial analysis. **Materials and Method** • A widely available low-cost PM sensor that uses light scattering techniques has been developed to supplement the air quality stations. their performance. • Certified instrument were Teledyne Beta Plus 620 and BAM 1020. What is Light scattering? • Light scattering is a light dispersion that reflect a scattering light of a light scattering of an accumulated particle or a single particle. assembly that brought by different production batch. polarization • The scatter light is detected by a photometer as an electric pulse and its height of pulse is determined scatterin as the particles size. • The number of pulses by area within time interval is (5)photodetector determined by the particles mass concentration. • The light source is a Laser or Infrared LED with a wavelength around 700 - 900 nm. • The photometer can be placed at any angle to the light beam such as 15, 30, 45, 60 or 90 $PM_{2.5}$ data patterns. degrees. • The high relative humidity remains the influence factor that has affected to the measurement performance by this technique. of the certified instrument.

- The PlanTower PMS5003 and the Nova-Fitness SDS021 were selected to evaluate
- Microsoft R open 3.53 and Microsoft Excel 2013 were the analyst tool.
- Electronic tool was Fluke 73ii and Hantek digital oscilloscope DSO5102P.
- •Relative standard deviation (RSD) was used to test the precision of low-cost sensors
- Linear regression (LR) and Maximin criterion were the tool to reveal the limit of detection (LOD). The seven levels of $PM_{2.5}$ classified as Lv1: 0-15, Lv2: > 15-30, Lv3: > 30-45, Lv4: > 45-60, Lv5: > 60-75, Lv6: > 75-90 and Lv7: > 90.
- The hygroscopic growth rate (HGR) and hygroscopic growth factor (GF) were used to estimate the values of $PM_{2.5}$ that effected by high relative humidity.
- LR was replaced by Polynomial 4th order (Poly4-R) in the order to match up with the
- Relative error (RE), root mean square error (RMSE) and r-square (R^2) were used as tools to observe an error of low-cost sensor detection which was drifting away from the value


Results

- There was no fault with the tested sensors for $3\frac{1}{2}$ weeks. (fig.1)
- RSD shows the PMS5003 assembly processes was more precise than SDS021

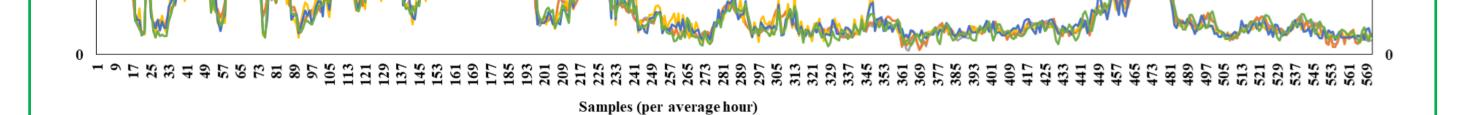
DE	Un-fixed			Petters and Kreidenweis				Crilley				Fig.2	
RE	PMS#1	PMS#2	SDS#1	SDS#2	PMS#1	PMS#2	SDS#1	SDS#2	PMS#1	PMS#2	SDS#1	SDS#2	
BAM-1020	228.14	229.35	139.39	104.28	151.68	153.11	99.29	69.08	110.96	112.23	98.25	76.63	
Teledybe-620	198.20	194.83	75.73	98.31	129.26	126.74	54.37	76.90	76.69	77.92	57.44	70.73	

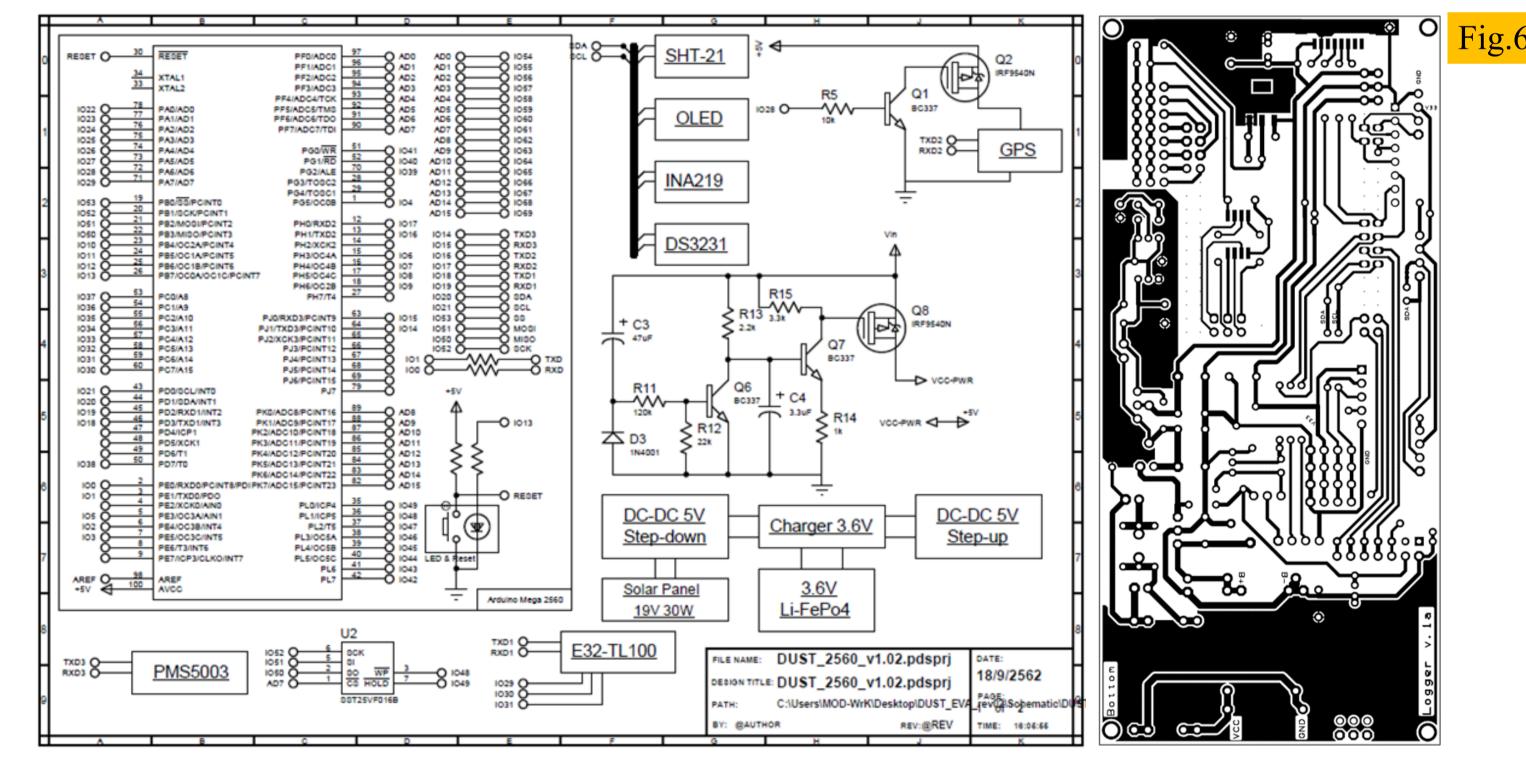
R ²	Linear Regression				Polynomial 4th Regression			R ² residual				
Un-fixed data	PMS#1	PMS#2	SDS#1	SDS#2	PMS#1	PMS#2	SDS#1	SDS#2	PMS#1	PMS#2	SDS#1	SDS#2
BAM1020	0.9415	0.9391	0.9420	0.9732	0.9489	0.9454	0.9470	0.9753	0.0074	0.0063	0.0050	0.0021
TeleDyne 620	0.8296	0.8168	0.7203	0.6480	0.8665	0.8533	0.7978	0.7501	0.0369	0.0365	0.0775	0.1021
	Petters and Kreidenweis											
BAM1020	0.9188	0.9160	0.9065	0.9452	0.9329	0.9299	0.9209	0.9528	0.0141	0.0139	0.0144	0.0076
TeleDyne 620	0.8581	0.8462	0.7648	0.6940	0.8800	0.8688	0.8079	0.7588	0.0219	0.0226	0.0431	0.0648
	Crilley											
BAM1020	0.8236	0.8197	0.8060	0.8536	0.8405	0.8373	0.8290	0.8752	0.0169	0.0176	0.0230	0.0216
TeleDyne 620	0.8265	0.8171	0.7735	0.7109	0.8550	0.8463	0.8053	0.7501	0.0285	0.0292	0.0318	0.0392

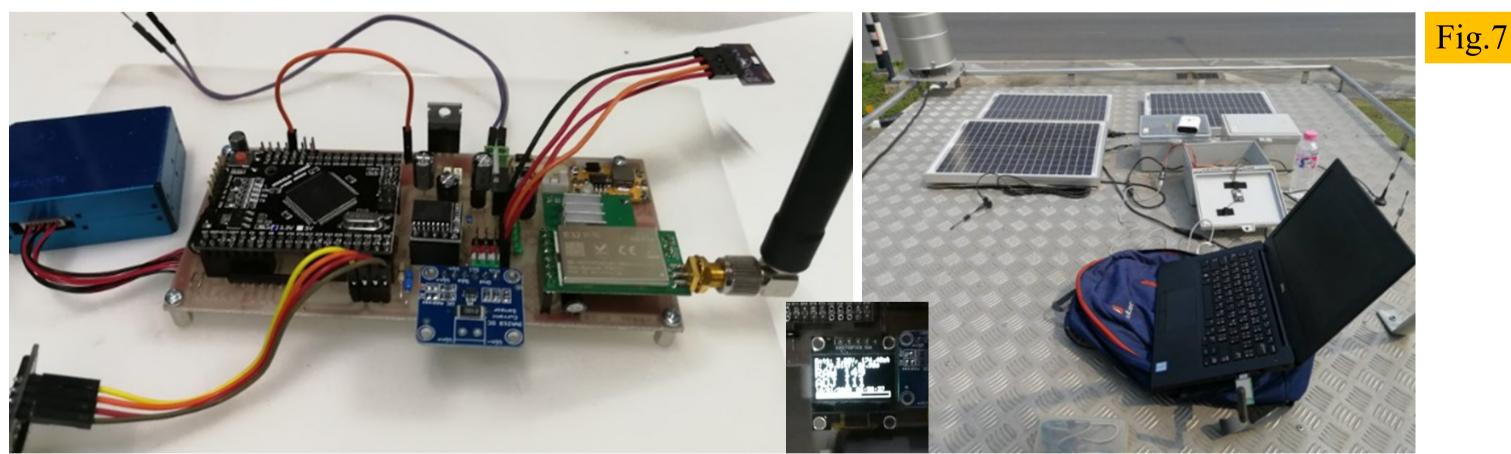
RMSE and R ²											Fig.4
PMS5003					SDS021						
Raw+LR	Ē	20.0374		0.9275	Raw+LR	Ē	15.4507		0. <mark>9</mark> 272	:F. erall	
Fixed+LR	RMS	12.7963	R ²	0.9225	Fixed+LR	RMSE	10.6043	R ²	0.9017	RE Ove	
Fixed+Po4	æ	8.3116		0.9357	Fixed+Po4	æ	9.2557		0.9187		

with < 0.5% deviation.

	PMS#1	PMS#2	Diff	SDS#1	SDS#2	Diff	BAM1020
SD	42.99	42.87		42.08	41.74		36.55
RSD	59.2%	59.0%	0.2%	65.6%	67.8%	2.2%	72.0%


	PMS#1	PMS#2	Diff	SDS#1	SDS#2	Diff	TYDN620
STD	18.87	18.75		19.74	20.57		13.62
RSD	45.4%	45.5%	0.1%	68.1%	71.3%	3.2%	59.2%


• R^2 of the PMS5003's LOD was $15\mu g/m^3$ as shown in the maximin criterion table.

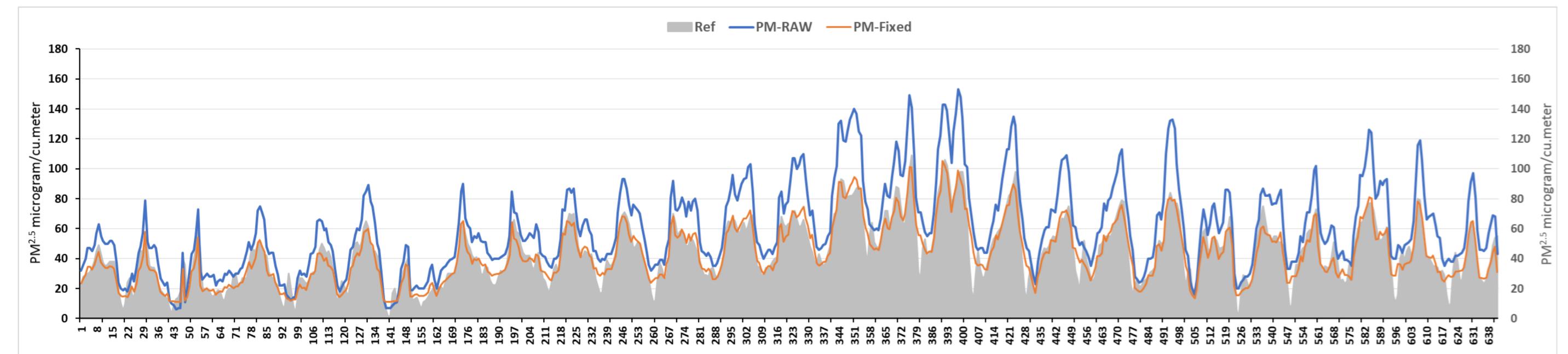

	PMS#1	PMS#2	SDS#1	SDS#2	max	min
L7	0.8630	0.8581	0.9579	0.9788	0.9788	
L6	0.1906	0.1535	0.3480	0.5837	0.5837	0.5837
L5	0.1468	0.1422	0.0671	0.0942	0.1468	0.1468
L4	0.2331	0.2249	0.0020	0.0307	0.2331	0.1468
L3	0.4329	0.4416	0.2343	0.3603	0.4416	0.2331
L2	0.3610	0.2828	0.2092	0.1945	0.3610	0.3610
L1	0.0017	0.0024	0.0203	0.0222	0.0222	0.0222

- The RE of sensors was in a fig.2, the Crilley model (6) could correct the drifted data higher than Petters model (7). Furthermore, the high relative humidity influence was the major role to worsen the sensors detecting performance.
- As replacement of LR with Poly4-R, had a potential to improve the performance of sensors. The result shows R^2 was higher than LR with both of the models as fig.3.
- R^2 and RMSE also insisted the Poly4-R was the best over the LR with low data deviation (RE analyzed in fig.2) and got a higher R^2 as fig.4.
- The result in fig.5 was derived from Petters model and Poly4-R to estimate $PM_{2.5}$ that compared with the $PM_{2.5}$ of the certified instrument.
- The developed station (fig.6) was based on C programming for ATMEGA 2560 through avr-gcc version 8 complier. The final prototype was the fig.7.
- The second test were held in November to December 2019. (Lowest section)
- The sample test was on 9 January 2020 at 16:07 which outside the research. The station's $PM_{2.5}$ was $48\mu g/m^3$ without the correction processes. When this value passed through the developed method, the expectation would be $34.09 \mu g/m^3$ which slightly varied from $36.84 \mu g/m^3$ of the certified instrument.

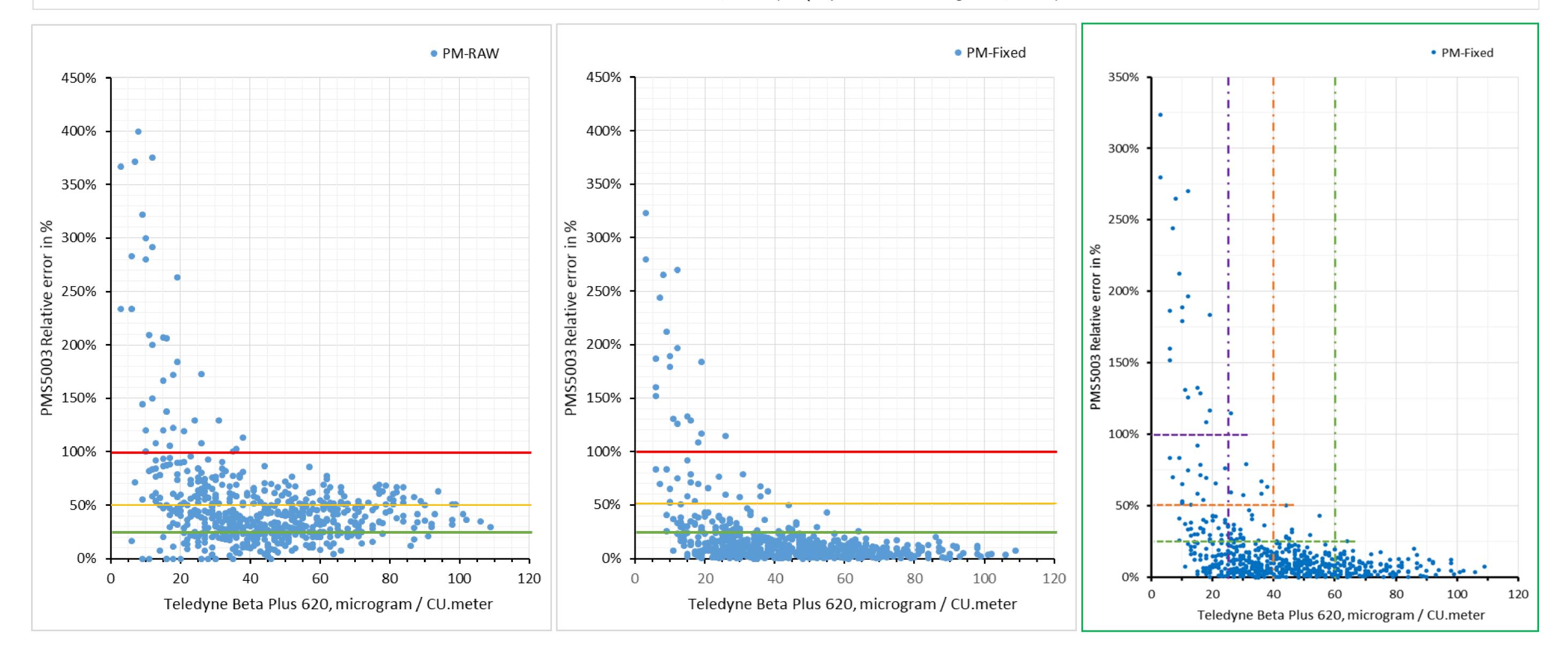
Query	Builder	Query Edit	or			D15 PM D20 022 D24 026 P78 000
1	SELECT					**************************************
2	dbo.S0	01T01.Da	ate Tim	ne,		
3	dbo.S0	01T01.Va	alue7 🗛	S 'PM2.	5',	
4	dbo.S0	01T01.Va	aluell	AS 'Tem	p',	
5	dbo.S0	01T01.Va	aluel2	AS 'RH%		GND VDD SCK SDA
6						- 10mA
7	FROM					H 49,91%
8	dbo.S0	001T01				RAW 48
9	WHERE					On.1 28
10	dbo.S0	01T01.Da	ate_Tim	ue = '202	20-01-09 16:07:	:00' 2920 16:04:45
11						
Messa	age Res	ult1				
Date	_Time		PM2.5	Temp	RH%	
2020	-01-09 16	:07:00	36.84	32.596	37.127	Contraction of the local division of the loc

Conclusions

PMS5003 can be used to monitor $PM_{2.5}$ level in an ambient environment. Its result correlated with the certified instrument as statistical significance. Because of R^2 gave 0.9357 or 93.5%, was an accordance with the Polynomial 4th order regression analysis model and RMSE was 8.3116. That referred to the discrepancy between the lowcost sensors and the certified instrument was around $\pm 8.3116 \mu g/m^3$.


 $Y' = -0.000000433x_i^4 + 0.0001836x_i^3 - 0.0242x_i^2 + 2.1x_i - 25.6, x_i >= 15.2$

In addition the above formula, the lowest x is 15.2 which is the corresponding LOD of PMS5003 that is $15\mu g/m^3$. While the sensor reads PM_{2.5} below $15.2\mu g/m^3$. the corrected $PM_{2.5}$ will be negative value. Also x_i must calculated by Petters model through hygroscopic growth factor (GF) as formula $x_i = \text{Sensor}_{\text{readvalue}} / \text{GF}$.


Literature cited

- (1) Williams, A.; Jones, J.M.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 2012, 38, 113–137.
- (2) Bayram H.; Devalia JL; Sapsford RJ; Ohtoshi T; Miyabara Y; Sagai M, et al. (1998). The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol 1998;18:441-448.
- (3) Grudzinski, J. (2007). Determination of Major Particulate Matter Components (PM10) in Urban Aerosol from Taiyuan City, China (Unpublished master's thesis). Thesis / Dissertation ETD.
- (4) Aung, N. (2017). Impact of fine particulate matter air pollutant on cardiac atrial and ventricular structure and function derived from CMR imaging - evidence from the UK Biobank. BEST ORAL ABSTRACTS, European Heart Journal - Cardiovascular Imaging, 18(2), Pages 116.
- (5) Minton, Allen. (2016). Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Analytical Biochemistry. 501. 10.1016/j.ab.2016.02.007.
- (6) Crilley, L. R. Shaw, M. Pound, R. Kramer, L. J. Price, R. Young, S. Lewis, A. C. Pope, F. D. (2018). Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques., 11: 709-720.
- (7) Petters, M. D. Kreidenweis, S. M. (2007). A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics., 7: 1961-1971.

The second test was on 23 Nov 2019 to 23 Dec 2019. $R^2 = 0.8941$, RMSE = 6.9786, mean absolute error (MAE) = 5.1268, Overall RE = 149.89

Date 2019-11-26 16:00 - 2019-12-23 09:00, 642 samples (Polynomial non-linear regression, 4 order)

