COURSE SPECIFICATION

Name of higher education institution : Mahidol University

Campus/Faculty/Department : Faculty of Environment and Resource Studies

Section 1 General information

1. Code and course name: ENTM 898 Dissertation

- 2. Number of credits: 48 (0-144-0) credit (lecturer-practices-self-study)
- 3. Courses and course types: Doctor of Philosophy Program in Environment and Resource Studies (International Program)
- **4. Teachers in charge of courses and instructors:** Doctor of Philosophy Program in Environment and Resource Studies (International Program) Committee and Program instructors
- **5. Semester/year:** 1st semester, 1st year
- 6. Date of last preparation or update of course details: July 16, 2021

Section 2 Goals and Objectives

1. Objectives of the Program

The objectives of the program are;

- 1.1 Demonstrate moral ethics with academic honesty and reliability as a professional in the field of environment and natural resource research;
- 1.2 Knowledgeably and comprehensively understand the principles and theories related to the fields of environment and resource management and conduct self-directed learning and follow the advances in academics and technology in those fields;
- 1.3 Analyze and criticize research and conduct research of the environment and resources based on professional morals and using correct procedures of research;
- 1.4 Work cooperatively with leadership and high responsibility for assigned work;
- 1.5 Apply information technology to mathematical and statistical analysis, compilation and discussion for conducting research, research presentation and dissemination

2. The purpose of developing or improving the program

The development of the world's unstable economy and the irresponsible development affecting the overall ecology and environment are the main causes of environmental imbalances in many places, particularly in Southeast Asian Nations (ASEAN). ASEAN, which consists of 10 ASEAN countries. One of the pillars of the ASEAN Community is "economic". The connections in that region make Thailand have to prepare and handle the economy without borders. Furthermore, climate change is occurring and has impacts in many areas around the world. It has a huge impact on the economic development of every country. These issues cause the system of education to undergo a paradigm shift by focusing on modern knowledge and skills in order to manage natural resources and sustainable environments.

The issue of sustainable development goals is one of the major challenges not only for Asian countries but the whole world. Therefore, the emphasis on education and new skills should be combined with the use of modern technology and be fully suitable for extensive areas. It will be a way to drive the world toward solving sustainability problems and be able to achieve sustainable development goals at all levels and in all areas. In addition, technological advances and rapidly-distributed information allow the world population to consume both accurate and incorrect information and may result in behavior modifications in many ways. Educational institutions must therefore participate urgently by providing the correct knowledge as well as the correct and appropriate economic development of each level to reduce the gap in society at all levels. The urgent issue that educational institutions must support is to enable society and communities to build immunity for themselves against intrinsic internal and external factors, including adhering to and maintaining a unique culture and good traditions.

The new phrase "new normality" coincides with the outbreak of the virus COVID-19. The new disease causes humanity on this planet to adapt at an unprecedented level. "New normality" has been forced upon societies due to this pandemic. The new normality that has emerged may affect humankind for a long time. Therefore, education and research, coupled with the great change of human behavior, will have to be aware of local and global changes. The educational and research institutions should provide support for humanity to live in this world as peaceful and healthy societies that can manage global threats including emerging diseases.

Section 3

Course Description and Implementation

Credits (lecture - practice - self-study)

ENID 898 Dissertation

48 (0-192-0)

สวคร 898 วิทยานิพนธ์

Research design; proposal presentation; research ethics; data and information classification; data analysis; research result synthesis and discussion; compilation of research result and dissertation writing; dissertation presentation, research dissemination; research paper publication and presentation; research dissemination ethics.

การออกแบบการวิจัย การเสนอโครงร่าง จริยธรรมการวิจัย การจำแนกข้อมูลและข่าวสาร การ วิเคราะห์ข้อมูล การสังเคราะห์และการอภิปรายผลการวิจัย การรวบรวมผลการวิจัยและการเขียนวิทยานิพนธ์ การนำเสนอวิทยานิพนธ์ การเผยแพร่ผลงานวิจัย การตีพิมพ์และนำเสนอผลงานวิจัย จริยธรรมในการเผยแพร่ ผลงานวิจัย

Section 4 Development of Student Learning Outcomes

1. Moralities and Ethics

- 1.1 Moralities and Ethics that need to be developed.
 - 1) A provider, a selfless, honest behavior, taking into account social and environmental.
 - 2) Have morals and ethics of environmentalists
- 1.2 Processes or activities to improve learning outcomes.
 - 1) Organize an orientation for students on moral and ethical discipline
 - 2) Incorporating morals and ethics to students at all times
 - 3) Continuously evaluate and inform students periodically so that students have the opportunity to improve and develop themselves.
- 1.3 Methods for evaluating learning outcomes.
 - 1) Observe and assess student behavior from the performance evaluation in research progress by the program committee and advisors.

2. Knowledge

- 2.1 Knowledge that must be gained
 - 1) Have knowledge and understanding of the content related to the environment and natural resources.
 - 2) Search for new knowledge from various sources of knowledge related to the environment and natural resources.
 - 3) Able to integrate knowledge to lead to solving research problems for sustainable environmental management or creating new innovations
- 2.2 Processes or activities to improve leaning outcomes
 - 1) The program provides workshops for students and each semester, students are required to report on their progress and hold a seminar on environment and natural resources.
- 2.3 Methods for evaluating learning outcomes
 - 1) Students can assess the workshops using the assessment form provided by the program.
 - 2) Student progress reports and academic forum are assessed by the program committee and the major advisor.

3. Intellectual skills

- 3.1 Intellectual skills to be developed
 - 1) Have the ability to think critically in a systematic way
 - 2) Competent in data analysis and data synthesis, problem solving and decision making.
- 3.2 Processes or activities to improve leaning outcomes
 - 1) In organizing a workshop, students may work in groups.
 - 2) Oualification examination
 - 3) Proposal defense
 - 4) Dissertation defense
 - 5) Research manuscript
- 3.3 Methods for evaluating learning outcomes
 - 1) Scores for the Qualification Examination
 - 2) Evaluate forms according to the issues identified to the students.

4. Interpersonal Skills and Responsibilities

- 4.1 Interpersonal skills and hands-on responsibilities should be developed.
 - 1) Able to work in a team, has the patience to know one's role and others can be a good leader and follower.
 - 2) Able to plan self-learning and take responsibility for others
- 4.2 Processes or activities to improve leaning outcomes
 - The program provides students with an orientation to understand interpersonal and responsibilities, as well as to create activities for harmony and teamwork.
 - 2) In organizing a workshop, students may work in groups.
- 4.3 Methods for evaluating learning outcomes
 - 1) Assessed by observing behavior, listening, expressing opinions and responding in presentations.

5. Numerical analysis skills, communication and information technology.

- 5.1 Numerical analysis, communication and information technology skills that should be developed.
 - 1) Ability to perform numerical analysis
 - 2) Ability to communicate in English, speaking, listening, reading and writing correctly, through international conferences, thesis writing and writing articles
 - 3) Able to choose the right technology and suitable for various conditions
- 5.2 Processes or activities to improve leaning outcomes
 - 1) The process of collecting both primary and secondary data, analysis and synthesis from the dissertation.
- 5.3 Methods for evaluating learning outcomes
 - 1) Assessed using forms for academic forum, proposal defense, and dissertation defense.

Section 5 Lesson plans and assessments

1. Lesson Plans

Details for 4 workshops provided by the Program are in an appendix

Year	Subject	Teaching activities	Instructors
1	Semester 1		
	1.1.1 Workshop 1: Natural Resources	- Lecture	Program committee
	Management	- Group discussion	
		- Presentation	
	1.1.2 Workshop 2: Technology of	- Lecture	Program committee
	Environmental Pollution Management	- Group discussion	
	1.1.3 Progress report (2 times)	Presentation	Program committee
			and major advisor
	1.1.4 Academic forum	Presentation	Program committee
			and major advisor
	1.1.5 Qualification examination	Presentation and	Program committee
		oral examination	and major advisor
1	Semester 2		
	1.2.1 Workshop 3: Research	- Lecture	Program committee
	Methodology and Academic Writing	- Practices	
		- Presentation	
	1.2.2 Workshop 4: Advanced	- Lecture	Program committee
	Statistics	- Practices	
	1.2.3 Progress report (2 times)	Presentation	Program committee
			and Major advisor
	1.2.4 Academic forum	Presentation	Program committee
			and major advisor
	1.2.5 Proposal defense	Presentation	Dissertation comittee
	1.2.6 Dissertation activities	Revised the	Major advisor,
		proposal	dissertation committee

2	2 Semester 1				
	2.1.1 Progress report (2 times)	Presentation	Program committee		
			and major advisor		
	2.1.2 Academic forum	Presentation	Program committee		
			and major advisor		
	2.1.3 dissertation activities	Data collection	Major advisor,		
			dissertation		
			committee		
2	Semester 2				
	2.2.1 Progress report (2 times)	Presentation	Program committee		
			and major advisor		
	2.2.2 Academic forum	Presentation	Program committee		
			and Major Advisor		
	2.2.3 Dissertation activities	Data evaluation	Major advisor,		
			dissertation committee		
	2.2.4 1 st manuscript	Manuscript writing	Major advisor,		
		and submission	dissertation committee		
3	Semester 1		_		
	3.1.1 Progress report (2 times)	Presentation	Program committee		
			and major advisor		
	3.1.2 Academic forum	Presentation	Program committee		
			and major advisor		
	3.1.3 Dissertation activities	Results writing	Major advisor,		
			dissertation		
			committee		
3	Semester 2				
	3.2.1 Progress report (2 times)	Presentation	Program committee		
			and major advisor		
	3.2.2 Academic forum	Presentation	Program committee		
			and major advisor		
	3.2.3 2 nd manuscript	Manuscript writing	Major advisor,		
		and submission	dissertation committee		

	3.2.4 Dissertation defense	Presentation	Major advisor,
			dissertation committee

5. Assessment

PLOs *	Activities	Assessments	Semester Semester
1	1.1.2, 1.2.2, 2.1.2, 2.2.2, 3.1.1, 3.2.1	Progress report evaluation	1, 2, 3, 4
		assessed by the program	
		committee and the major	
		advisor	
2	1.1.1, 1.2.1, 2.1.1, 2.2.1	Workshop evaluation	1, 2, 3, 4, 5, 6
3	1.1.3, 1.2.3, 2.1.3, 2.2.3, 3.1.2, 3.2.2	Academic forum evaluation	1, 2, 3, 4, 5, 6
		assessed by the program	
		committee and the major	
		advisor	
4	1.2.5, 2.1.4, 2.2.4, 3.1.3	Dissertation advisor evaluation	2, 3, 4, 5, 6
5	1.1.4, 1.2.4, 2.2.5, 3.2.3, 3.2.4	1. Scores for the Qualification	1, 2, 4, 6
		Examination	
		2. Proposal defense, and	
		dissertation defense	
		evaluation.	

^{*} Reference the Program learning outcomes in appendix

Section 6 Assessment and improvement of the program operations

1. Strategies for evaluating the effectiveness of each activity by students.

To evaluate the effectiveness of this activity, the program will be assessed both during the event and, when finished, is composed.

- 1.1 Group discussion between teachers and learners
- 1.2 Observation from learners' behavior
- 1.3 Instructor assessment form and individual activity assessment form

2. Conducting a review and planning to improve the effectiveness of the activities from the results of the assessment of the activities achievement and effectiveness have planned to improve teaching and activities details in order to increase the quality as follows:

- 2.1 Improve activities every 3 years or as student's suggestion and comments
- 2.2 Change or switch instructors who conduct activities to give students perspectives on applying this knowledge to problems arising from instructors' research.

Appendix

Program Learning Outcomes (PLOs)

- 1. Demonstrate moral ethics as a professional in the field of environment and natural resource research
- 2. Analyze the complex relationships between natural and human systems
- 3. Solve environmental problems using accurate information, technology and modern tools
- 4. Integrate facts, concepts, and methods from multidisciplinary approaches to make ethical and informed judgments on complex environmental issues
- 5. Create novel interdisciplinary research studies for sustainable development at the state, national and regional level in terms of publication and innovation.

Table Relationship between Courses of the Program and Program Learning Outcomes

Code	Name	Credits			PLOs		
			1	2	3	4	5
ENID898	Dissertation	48	М	М	М	М	М

I = ELO is introduced & assessed

R = ELO is reinforced & assessed

P = ELO is practiced & assessed

M = Level of Mastery is assessed

Appendix G Research projects

Name: Assoc.Prof.Dr.Cheerawit Rattanapan

No.	Name of research project	Research concept	Funding	Period
1	An examination of the factors	The purpose of this study was to examine young drivers'	Mitsui Sumitomo	1 year
	that influence young drivers'	beliefs, perceptions, and decision-making processes that	Insurance Welfare	(2018-2019)
	willingness to speed and text	may determine their willingness to engage in four risky	Foundation	
	while driving for sustainable	driving behaviours: texting while driving, texting while		
	encouragement of safety driving	stopped, high level speeding and low level speeding. The		
	in Thailand.	predict factor of young drivers' (non-intentional) willingness		
		to engage in these aforementioned on road behaviours was		
		investigated for proposing the sustainable prevention of		
		traffic injury in Thailand.		
2	Appropriate Model for Plastic	The objective of this research was to develop the	National Research	1 year
	Waste Management in Coastal	appropriate model for plastic waste management in the	Council of Thailand	(2019-2020)
	Province toward Stakeholder	coastal province toward stakeholder integration and	(NRCT))	
	integration and Sustainability : a	sustainability for Trang province. The volume and situation	, ,	
	Case Study of Trang Province.	of plastic waste management, the plastic reduction		
		behavior among tourists and household, the strategic		
		analysis of the coastal area for plastic waste management		

No.	Name of research project	Research concept	Funding	Period
		by SWOT matrix were collected. Then, the collection data		
		were prioritized by the in-depth interview technique.		
		Finally, the developed model was approved by the		
		workshop with the stakeholders.		
3	Sustainable Supply Chain	The objective of this research was to develop the	National Research	1 year
	Management of the Tire Industry	sustainable approach for supply chain management of tire	Council of Thailand	(2020-2021)
	in Thailand by Enhancing Green	supply chain in Thailand by green productivity with value	(NRCT))	
	Productivity with Value Chain	chain analysis. The performance of tire supply chain was		
	Analysis	collected and analyzed in the pattern of value chain		
		analysis. Then, the enhancement approach of tire supply		
		chain was developed by clean technology. Finally, the		
		green productivity, supply chain value and environmental		
		impact were analyzed for reducing the cost operation of		
		developed approach.		

Name: Assoc.Prof.Dr.Jaruwan Wongthanate

No.	Name of research project	Research concept	Funding	Period
1	Biohythane and biobriquette	Thailand is an agricultural land, so biowaste from	National Research	2 years
	production from agricultural and	agricultural sector and agro-industrial process can be	Council of Thailand	(2019-2021)
	industrial wastes	applied for bioenergy that is the biowaste management.	(NRCT)	

_				I	1
			The objectives of this study are: (1) to investigate the		
			potential biohythane and biobriquette production from		
			agro-industrial waste and (2) to generate the bioenergy		
			from biohythane and biobriquette production from agro-		
			industrial waste. This study contributed useful information		
			to enhance the waste-to-energy in the agricultural and		
			industrial sectors.		
	2	Biofuel production from organic	An energy crisis can be a big problem and severely impact	The Energy	2 years
		wastes by thermal and	the development of a country. Hence, the energy from	Conservation	(2016-2018)
		biological conversion processes	biomass is an alternative energy source and it can be used	Promotion Fund,	
			as biofuel that is readily available and inexpensive. The	Energy Policy and	
			objectives of this study are: (1) technical feasibility of	Planning Office,	
			biofuel from water hyacinth mixed with cassava starch	Ministry of Energy,	
			sediment by biological and physical conversion processes	Thailand.	
			and (2) comparison of the gross electricity production in		
			these processes. This study contributed significant		
			information to promotion of energy efficiency in the		
			community.		

Name: Assoc.Prof.Dr.Kanchana Nakhapakorn

No.	Name of research project	Research concept	Funding	Period
1	Thai Coast: Coastal Vulnerability,	The goal of the Thai-coast project is to improve scientific	The Natural	2018-2021
	Resilience and Adaptation in	understanding of the vulnerability of Thailand's shoreline	Environment	
	Thailand	and coastal communities to hydro-meteorological hazards,	Research Council	
		including storms, floods and coastal erosion, under future	(NERC), the	
		climate change scenarios.	Economic and	
			Social Research	
			Council (ESRC) and	
			the Thailand	
			Research Fund,	
			funded through	
			the Newton Fund	
			in Thailand.	
2	Examining practices of	Predictions suggest that ¾ of the world's population will	GCRF through Edge	2020-2021
	community-driven Disaster Risk	live within 60 km of the coastline by 2020, with rising sea-	Hill University	
	Reduction (DRR)	levels and coastal erosion threatening coastal populations.		
	entrepreneurship in response to	This project focuses on one of the most vulnerable		
	new knowledge of climate-	coastal countries, Thailand, where 11 million people, 17%		
	change risk, Thailand	of the population, live in coastal communities. These		

No.	Name of research project	Research concept	Funding	Period
		communities are vulnerable to climate change-induced		
		hazards, including storms, floods and coastal erosion.		
		Potential sea-level rise of 1 metre in the next 40 years,		
		poses an unprecedented challenge to Thai planning		
		agencies and government organisations who face coastal		
		flooding and erosion costs of up to £70 million by 2100.		
		Such patterns raise urgent questions about how		
		governments and communities can come to terms with		
		how increased climate risk might work alongside, or within,		
		other risk-reduction initiatives. Recent work has		
		acknowledged the current inefficiency of government and		
		institutional arrangements in responding to increased		
		climate risk – and emerging research is beginning to chart		
		the novel, entrepreneurial forms of Disaster Risk Reduction		
		(DRR) practice that community organisations are employing		
		in order to respond to increased knowledge of new threats		
		(Dickinson, 2019; Mikulewicz, 2018)		
3	Climate Change, Coastal Erosion	Thailand is categorised as Upper Middle-Income Countries	GCRF through Edge	2019-2020
	and Risks of Flooding to Low-	by the DAC (list of ODA Recipients). The specific	Hill University	
		development tissue addressed by the project is building		

No.	Name of research project	Research concept	Funding	Period
	Lying Coastlines Subject to	resilience against coastal erosion and flooding. The		
	Tropical Storms, Thailand	project's aim is to quantify links between climate change,		
		coastal erosion and flooding in populated areas exposed		
		to tropical storms. This addresses the UN Sustainable		
		Development Goal 13 ('To take urgent action to combat		
		climate change and its impacts).		
4	Assessing the Health Impacts of	Using monitored data obtained from PCD permanent	The Thailand	2017-2020
	Air Pollution in Thailand	stations to illustrate the distribution of air pollution (PM10	Research Fund,	
	(TAPHIA)	and/or PM2.5) to estimate the health impact	funded through	
			the Newton Fund	
			in Thailand.	

Name: Assoc. Prof. Dr. Nathsuda Pumijumnong

No.	Name of research project	Research concept	Funding	Period
1	Paleoenvironmental	The ongoing interactions between humans and the	National Research	2019-2021
	reconstruction in the log coffin	environment reflect the complex dynamics of both natural	council	
	culture	and inter-dynamic mechanisms of human systems.	(Intermediate	
		Changes in environmental conditions, especially climate,	Research	
		are important for the adaptation of various organisms. In	Fellowships)	
		Thailand, changes in the environment and climate at many		
		periods still lack clear information, especially one		
		prehistoric period that spans 2,600 - 1,100 years ago and is		
		important to the settlement of people in Thailand is		
		"Coffin Culture". The coffin culture is a dominant death		
		culture in the highlands of Thailand and this culture is		
		evident in many parts of Thailand including Southeast Asia.		
		Previous studies have not been able to solve the mystery		
		of environmental conditions, climate and environmental		
		changes over the length of the coffin culture period that		
		may be important factors regarding the coffin		
		community/social culture. Therefore, this research aims to		
		create a clear projection of the environment in the coffin		

No.	Name of research project	Research concept	Funding	Period
		culture era in Thailand and to connect those images		
		together as a driving factor to create a social picture in the		
		coffin culture era and trying to connect the coffin culture		
		in Thailand and other regions where evidence remains. In		
		addition, the environment during the period will be		
		compared with the global context to see differences or		
		similarities and find the drivers of the changes. The study		
		will use wood samples from explored archaeological sites		
		and additional collection of some of the sites. The		
		dendrochronology method, archaeological wood is used		
		to create a dendrochronology index, and the stable		
		oxygen isotopes of the tree rind width are used to create a		
		projection of the past environment in the log coffin		
		culture. The result of this research is a projection of		
		environmental conditions along the length of the coffin		
		culture covering time and space. The wooden coffin socio-		
		cultural simulations are based on variations in the		
		environment and climate as well as archeological data.		
		Comparing the environmental conditions during the coffin		
		culture in Thailand and the global context, these data will		

No.	Name of research project	Research concept	Funding	Period
		be useful both for the academic community at the macro		
		level and for a deeper understanding at the micro and		
		local level where evidence is found.		

Name: Assoc. Prof. Dr. Nuanchan Singkran

No.	Name of research project	Research concept	Funding	Period
1	Determination of carbon	Determination of carbon sequestration and oxygen	The Korea	1 year
	sequestration and oxygen	production of trees in public parks of Bangkok Metropolis	Foundation for	(2020-2021)
	production of trees in public	for sustainable urban development and reduction of	Advanced Studies'	
	parks of Bangkok Metropolis for	carbon dioxide (CO ₂) emission into the atmosphere is a	Asia Research	
	sustainable urban development	research project to support the sustainable development	Center of	
	and reduction of CO ₂ emission	goals (SDGs) of the United Nation (United Nations Thailand	Chulalongkorn	
	into the atmosphere	2015) under the context of green area research for human	University	
		sake and sustainability of all living creatures. The research		
		project reponds to the SDG 11 (Sustainable cities and		
		communities) and SDG 13 (Climate action). These are to		
		achieve the quality of life of urban population and		
		alleviate the BMA's environmental problems that occur		
		together with the economic expansion, so that Bangkok		
		continues its growth with friendly environment, is a		
		sustainable metropolis and low carbon society, and		
		reduce the effect of climate change.		

Name: Assoc. Prof. Prapeut Kerdsueb

No.	Name of research project	Research concept	Funding		Peri	od
1	ASEAN Flyway Network Waterbird	Thailand is a partner of the East Asian-Australasian Flyway	Asian Center	for	1	year
	Census and Wetland	Partnership (EAAFP) since 2010. It has three designated	Biodiversity		(2019)	
	Assessments 2019: Krabi Estuary	coastal flyway network sites namely Krabi Estuary and Bay				
	And Bay, Pak Tale Laem Phak Bia	(EAAF 084/ 21,299 ha), Pak Tale Laem Phak Bia (EAAF 121/				
	And Khok Kham Wetlands	86,66 ha), and Khok Kham (EAAF 122/ 7,561 ha). The sites				
		are designated under the specifications of the Partnership.				
		Among the many species supported by Thai wetlands, the				
		region has been recognised for its numerous sightings of				
		non-breeding Spoon-billed Sandpipers, a Critically				
		Endangered shorebird that migrates along the EAAF. Krabi				
		Estuary and Bay, Pak Tale Laem Phak Bia, and Khok Kham				
		support 173,114 waterbirds, 44,712 waterbirds, and 216,978				
		waterbirds, respectively. There 3 first IUCN global Red List				
		of Threatened Animals such as the Spoon-billed Sandpiper				
		(CR), Great Knot (EN), Red Knot (EN), Spotted Greenshank				
		(EN), Chinese Egret (VU). During this study, there were no				
		more than 20 participants. Initially, there may be obstacles				
		in the survey as understanding the forms of data recording				

No.	Name of research project	Research concept	Funding	Period
		and surveying and counting bird populations, which are		
		regarded as the strengths of a long and continuous survey		
		team. The challenging issues encountered in this work are:		
		1) understanding communication between the database		
		management team and the survey team and 2) the		
		management guidelines for future habitat and ecosystems.		
2	ASEAN Flyway Network Waterbird	Thailand is a partner of the East Asian-Australasian Flyway	Asian Center for	1 year
	Census and Wetland	Partnership (EAAFP) since 2010. Don Hoi Lot-Ban	Biodiversity	(2019)
	Assessments 2019: Don Hoi Lot-	Khlongkhone or Don Hoi Lot Ramsar site is to be submitted		
	Ban Khlongkhone Wetland (New	as a new EAAFP Flyway Network site in 2020. The sites are		
	Se)	designated under the specifications of the Partnership.		
		Among the many species supported by Thai wetlands, the		
		region has been recognized for its numerous sightings of		
		non-breeding Spoon-billed Sandpipers, a Critically		
		Endangered shorebird that migrates along the EAAF. Don Hoi		
		Lot-Ban Khlongkhone supports 133,599 waterbirds. There		
		are 13 species of globally threatened and near threatened		
		species as per the IUCN global Red List of Threatened		
		Animals such as Great Knot (EN), Black-tailed Godwit (NT),		
		Asian Dowitcher (NT), Eurasian Curlew (NT), and Painted		

No.	Name of research project	Research concept	Funding	Perio	od
		Stork (NT), etc. In conducting this study, there were no more			
		than 20 participants. Initially, there may be obstacles in the			
		survey as understanding the forms of data recording and			
		surveying and counting bird populations, which are regarded			
		as the strengths of a long and continuous survey team. The			
		challenging issues encountered in this work are: 1)			
		understanding communication between the database			
		management team and the survey team, and 2) the			
		management guidelines for future habitat and ecosystems.			
3	Review and Update on the Status	The project will conduct a review of existing information	IUCN Asia under the	1	year
	of Key Invasive Alien Species in	regarding the status of key IAS in their wetland sites (Kaper	Mekong WET	(2021)	
	Wetlands of The Lower Mekong	Estuary/Laemson Marine National Park/Kraburi Estuary	Program		
	Basin	Ramsar site, Bang Prakong River and Songkram River Ramsar			
		Site). Information to collect include all published scientific			
		articles, technical reports, country policy and management			
		documents regarding IAS and the focal species. The project			
		will then carry out field surveys and community interviews			
		to collect new data about IAS. We will focus our study on			
		four key invasive alien species: Giant mimosa (Mimosa pigra),			
		Water hyacinth (Eichhornia crassipes), Golden apple snail			

No.	Name of research project	Research concept	Funding	Period
		(Pomacea canaliculata) and Suckermouth catfish		
		(Hypostomus plecostomus). In addition to these focus		
		species, through field surveys the country teams will		
		identify other IAS that are important at each wetland site.		
		Field observations and new data collection will focus on		
		the following topics: 1) Status of invasion, including		
		distribution maps for IAS, only qualitative assessment of		
		abundance and trends based on interviews with local		
		people are included since quantitative assessment of		
		abundance and distribution mapping for these two species		
		are impossible to achieve within the time frame of the		
		study, 2) Current IAS management practices being		
		implemented at each wetland site, 3) Technical capacity of		
		the wetland sites regarding IAS control and management, 4)		
		Impacts of IAS on the livelihoods of local communities		
		(both negative and positive), 5) Presence of other IAS that		
		are important at each wetland site, 6) Climate-related issues		
		with regard to IAS management, and 7) Consultations with		
		wetland managers and government agencies responsible for		
		IAS control.		

Name: Assoc. Prof. Dr. Sura Pattanakiat

No.	Name of research project	Research concept	Funding	Period
1	Food Security Assessment	Space technologies and geo-informatics application to	Agricultural	Initiate ≈
(Upcoming)	based on Land Cover and Land	evaluate the food security under land cover and land	Research	October
	Use Change Situation in Mae	use change (LCLUC) situation in Mae Chang watershed	Development	2021 (1
	Chang Watershed, Lampang	through the following issues:	Agency (ARDA)	year)
	Province	1. Land cover/ Land use assessment and change		
		prediction as well as crop intensity, particular 3		
		economic crops such as rice, corn, and casava.		
		2. Evaluate the annual water yield		
		3. Evaluate soil erosion, sediment, and nutrient export		
		4. Economic crop suitability assessment		
		5. Food security assessment based on LCLUC		
2	Drought Impact Assessment on	The application of space technologies and geo-	Agricultural	Initiate ≈
(Upcoming)	Agricultural Security in Mae	informatics to evaluate drought impact on agricultural	Research	July or
	Chang Watershed Lampang	land in Mae Chang watershed through the following	Development	August 2021
	Province	issues:	Agency (ARDA)	(1 year)
		1. Land cover/ Land use assessment and change		
		prediction		
		2. Simulate future climate scenario under IPCC		

No.	Name of research project	Research concept	Funding	Period
		3. Specify the drought situation by using Standardized		
		Precipitation Index (SPI)		
		4. Evaluate water yield and water scarcity		
		5. Agricultural land suitability under drought situation		
3	Development of Particulate	Space technologies and geo-informatics application to	National Research	21 April
	Matter 2.5 Forecast and	assess PM2.5 distribution and develop the geospatial	Council of	2021 - 20
	Warning System in Lampang	model of PM2.5 concentration in Lampang Province by	Thailand (NRCT)	October
	Province	combining several geospatial information incorporated		2022
		with ground station data		
4	Ecosystem Services Assessment	The application of space technologies and geo-	Geo-Informatics	1 October
	for Urban Green Space	informatics to evaluate the urban ecosystem services	and Space	2020 - 30
	Management, Kanchanaburi	within 3 districts of Kanchanaburi province, including	Technology	September
	Province	Mueang Kanchanaburi, Tha Muang, and Tha Maka by	Development	2021
		interpreting and classifying land use /land cover and	Agency (Public	
		change prediction couple with the value transfer	Organization) -	
		method	GISTDA	
5	The Economic Trend and	The observation and gathering of the primary and	Biodiversity-based	2 June 2020
	Potential of Economic Plants	secondary data about the byproduct's utilization from	Economy	- 28 January
	List in Thailand	the economic plants and for analyzation	Development	2021
		economic plants' potentiality and market demand	Office (Public	

No.	Name of research project	Research concept	Funding	Period
			Organization) -	
			BEDO	
6	Geo-informatics to Assess and	Space technologies and geo-informatics application for	- Mae Fah Luang	28 February
	Predict Floods and Droughts in	transboundary watershed management of Thailand and	University	2020 - 1
	Nam Mae Sai – Nam Ruak	Myanmar in Sai-Ruak watershed by following objectives:	- Office of the	January
	Watershed	1. To identify the state of land cover / land use	National Water	2022
		changes in Mae Sai - Nam Ruak watershed in 2000, 2010	Resources (ONWR)	
		and 2020, and predict future land use in 2030 through	- Lancang-Mekong	
		the use of geo-informatics technology	Cooperation	
		2. To classify land suitability in Mae Sai - Nam Ruak	Special Fund	
		watershed		
		3. To establish flood and drought risk area mapping		
		using geo-informatics technology		
		4. To propose land use planning for sustainable		
		watershed management		
7	Geo-informatics Technology for	Space technologies and geo-informatics application for	Geo-Informatics	1 October
	Green Space Assessment in	interpreting and classifying land use land cover and	and Space	2019 - 30
	Nonthaburi Province	green space in Nonthaburi province, including green	Technology	September
		space as public service, utility, road median, economic,	Development	2020
		nature, and fallow. Furthermore, urban green space	Agency (Public	

No.	Name of research project	Research concept	Funding	Period
		index (UGSI), per capita green space (PCGS), as well as	Organization) -	
		green space accessibility, have been analyzed.	GISTDA	
8	Geo-informatics Application to	Space technologies and geo-informatics application for	Geo-Informatics	1 October
	Monitoring Land Cover/ Land	interpreting and classifying land use land cover changes	and Space	2019 - 30
	Use Change in Nakhon Pathom	and predicting the future LULC under the Business as	Technology	September
	Province	Usual (BAU) scenario in Nakhon Pathom Province	Development	2020
			Agency (Public	
			Organization) -	
			GISTDA	
9	Water and Ecosystem Security	The application of geo-informatics to evaluate the	Agricultural	21
	in Lower Part of Mae Nam	water and ecosystem security in Lower Part of Mae	Research	December
	Phetchaburi Subbasin	Nam Phetchaburi Subbasin by following objectives:	Development	2018 - 20
		1. To classify and predict land use changes in the	Agency (ARDA)	December
		Lower Part of Mae Nam Phetchaburi subbasin by using		2019
		geo-informatics technology		
		2. To assess the water balance caused by land use		
		changes in the Lower Part of Mae Nam Phetchaburi		
		subbasin		
		3. To assess the biodiversity in the Lower Part of Mae		
		Nam Phetchaburi subbasin.		

Name: Assistant Prof.Dr.Gunn Panprayun

No.	Name of research project	Research concept	Funding	Period
1	Solar Powered Boat to Promote	To deploy Solar Powered Boat to Mak island, Trat	NRCT	March 2021
	Sustainable Tourism Policy	province, to promote sustainable tourism and to collect		- Feb 2022
		boating data for policy suggestions.		

Name: Asst.Prof.Dr.Kritana Prueksakorn

No.	Name of research project	Research concept	Funding	Period
1	Performance evaluation of	This research aims to identify the most suitable Global	-	December
	CMIP6 GCMs to simulate	Climate Models (GCMs) to simulate climate in the past in		2021 –
	historical temperature and	Southeast Asia (SEA) to obtain a group of GCMs with the		November
	precipitation over Southeast Asia	highest potentials for accurately simulating future climate.		2024
		This will be useful in making decisions and preparing for		
		prevention and mitigation of damage and potential		
		impacts from climate change, probably happening in the		
		next 10-20 years in countries in SEA.		
2	Social life cycle assessment of a	As one of the most popular tourist destinations in	-	December
	tourist island – a case study of	Thailand, Phuket has attracted an increasingly large		2021 –
	Phuket	number of visitors every year. Not only being a great		November
		contributor to the gross provincial product (GPP), Phuket		2024
		tourism also has fostered better opportunities for		
		residents' careers and other industries' development.		
		However, the more tourists Phuket receives, the heavier		
		the social burden to local people this island carries on.		
		Therefore, it is necessary to evaluate the social impacts		
		that tourism has brought about for Phuket and take the		

No.	Name of research project	Research concept	Funding	Period
		damage caused into the economic accounting of this		
		island. This study aims to evaluate social impacts for		
		Phuket using life cycle assessment (LCA). The results of		
		this study could be used as supportive information about		
		destructive influences caused by tourism to introduce an		
		appropriate policy to ameliorate the performance of		
		tourism.		
3	Agri-tourism based energy	This research aims to develop a pilot project for	-	December
	model for mitigation of global	community enterprise by integrating the principle of		2021 –
	warming	circular economy together with an idea about agriculture		November
		tourism, which is proved that it can help to sustainably		2024
		develop agricultural provinces. The target is to help		
		increase the local people's income, to encourage food		
		production in tourist area itself, and to help reduce open		
		burning from agricultural practices. The success of this		
		project can be a new model for development of Thailand		
		for many provinces without high cost of investment.		

Name: Asst.Prof.Kulvadee Kansuntisukmongkol

No.	Name of research project	Research concept	Funding	Period
1	The Pilot Project to Develop	The pilot project to develop school-based curriculum of	PTT Reforestation	1 year
	School Based Curriculum of	local ecological knowledge for educational institutes	Institute	(2018)
	Local Ecological Knowledge for	around Wang Chan Forest Project has its aim to build a		
	Educational Institutes around	learning package to study local ecosystems. The tools can		
	Wang Chan Forest Project	be integrated into official curriculum scheme of both		
		school-based and non-formal curriculums. Wang Chan		
		Forest Project of PTT Reforestation Institute and local		
		communities have participated in building the curriculum.		
		The curriculum building has yielded learning experiences		
		among the teamwork and organized learning network		
		among people who are working with the youth in the area.		
		The end products are teaching plan handbooks for		
		teachers and books for students. The objectives of		
		curriculum building project are to (1) apply research		
		findings from the previous research project regarding		
		natural resources and communities in Pah Yup Nai Sub-		
		district together with the capacity of Wang Chan Forest		
		project of PTT Reforestation Institute to develop school-		
		based curriculum of local ecological knowledge for		
		educational institutes around Wang Chan Forest Project,		

(2) make use of the capacity of Wang Chan Forest project	
(2) make use of the capacity of Wang Chan Forest project	
of PTT Reforestation Institute by providing learning area of	
local resource base with participation of various sectors,	
and (3) develop guidelines for future activities in line with	
Sustainability and Co-Benefit concepts.	

Name: Asst.Prof. Dr. Monthira Yuttitham

No.	Name of research project	Research concept	Funding	Period
1	Greenhouse gases emissions and	Thailand Rubber tree plantations and product is the large	National Research	1 year
	potential of carbon stock in	scale product in the World. Based on global Rubber tree	Council of Thailand	(2021-2022)
	rubber tree plantations in	plantations is high potential to stock carbon and can be	(NRCT))	
	Eastern Thailand	mitigation greenhouse gases emissions. Thus, these		
		research aims to study the Greenhouse gases emissions		
		and potential of carbon stock in rubber tree plantations in		
		Eastern Thailand. The objectives are 1) To estimated soil		
		carbon stock in Rubber tree planation, 2) To estimated		
		carbon stock from above ground biomass using UAV, 3) To		
		estimated potential of carbon stock in rubber tree		
		plantations, 4) To estimated greenhouse gas emission and		
		recommendation mitigation options from Rubber tree		
		planation to farmer. In addition, the develop methodology		
		and equations from UAV, carbon stock from soil and		
		above ground biomass can be databased of Thailand for		
		Thailand Voluntary Emission Reduction Program: T-VER in		
		agriculture and forest sector. Moreover, the mitigations		

	options from rubber tree plantations should be	
	recommended to framer and related organization.	

Name: Assist. Prof. Dr. Noppol Arunrat

No.	Name of research project	Research concept	Funding	Period
1	Alternative evaluation on	The objectives of this study are: 1) to find a model of	Mahidol University	1 year
	land use management to	cropping system in the area that is not suitable for growing		(2021-2022)
	cope with climate change: a	rice; 2) to assess the carbon footprint and the economic		
	case study in Phichit Province	value of the crop system; 3) to assess the impact of climate		
		change on farmers' adaptation approaches; and 4) to suggest		
		effective adaptation approaches to support decision-making		
		on land use modifications. The findings will help to improve		
		the understanding for the future policy making on adaptation		
		strategies to cope with the impact of climate change in the		
		future.		
2	Knowledge management for	The objectives of this study are: 1) to transfer and	National Research	1 year
	rice varieties and network	disseminate the learning process, knowledge of farmers in	Council of Thailand	(2019-2020)
	management of Young Smart	rice variety management; 2) transfer and disseminate the	(NRCT)	
	Farmer to cope with climate	process of creating and managing the Young Smart Farmer's		
	variability	network with; and 3) prepare manuals and infographic media		
		summarizing the rice variety management knowledge to		
		support environmental change and use in public policy		
		through community participation process.		

No.	Name of research project	Research concept	Funding	Period
3	Evaluation and comparison of	A large-scale agricultural extension program in Thailand is	National Research	1 year
	environmental, economic	established under the economy of scale concept. The	Council of Thailand	(2018-2019)
	and management aspects	objectives of this study are: 1) to evaluate and compare	(NRCT)	
	between individual and large	between individual and large-scale farming in the		
	scale farmers to alternative	environmental aspect by using the life cycle assessment of		
	mitigation options	greenhouse gas emission and water footprint assessment.		
		Moreover, costs and return, and cost and benefit ratio were		
		used to evaluate the economic aspect; and 2) to investigate		
		the role of communication, participation, and management of		
		both farming. This study contributed valuable information not		
		only for farmers by offering opportunities to adopt farm		
		practices that could mitigate GHG emissions, water footprint,		
		and increase farm income, but also for policymakers regarding		
		the identification of key options for sustainable farming and		
		climate change mitigation in Thailand's agricultural sector.		

Name: Asst. Prof. Dr. Piyakarn Teartisup

No.	Name of	research	project	Research concept Fundi	ıg	Peri	od
1	ASEAN Flywa	y Networ	k Waterbird	Thailand is a partner of the East Asian-Australasian Flyway Asian Cent	er for	1	year
	Census	and	Wetland	Partnership (EAAFP) since 2010. It has three designated Biodiversity		(2019)	
	Assessments	2019: Kı	rabi Estuary	coastal flyway network sites namely Krabi Estuary and Bay			
	And Bay, Pak	k Tale Lae	em Phak Bia	(EAAF 084/ 21,299 ha), Pak Tale Laem Phak Bia (EAAF 121/			
	And Khok Kh	nam Wetl	ands	86,66 ha), and Khok Kham (EAAF 122/ 7,561 ha). The sites			
				are designated under the specifications of the Partnership.			
				Among the many species supported by Thai wetlands, the			
				region has been recognised for its numerous sightings of			
				non-breeding Spoon-billed Sandpipers, a Critically			
				Endangered shorebird that migrates along the EAAF. Krabi			
				Estuary and Bay, Pak Tale Laem Phak Bia, and Khok Kham			
				support 173,114 waterbirds, 44,712 waterbirds, and 216,978			
				waterbirds, respectively. There 3 first IUCN global Red List			
				of Threatened Animals such as the Spoon-billed Sandpiper			
				(CR), Great Knot (EN), Red Knot (EN), Spotted Greenshank			
				(EN), Chinese Egret (VU). During this study, there were no			
				more than 20 participants. Initially, there may be obstacles			
				in the survey as understanding the forms of data recording			
				and surveying and counting bird populations, which are			
				regarded as the strengths of a long and continuous survey			

No.	Name of research project	Research concept	Funding	Period
		team. The challenging issues encountered in this work are:		
		1) understanding communication between the database		
		management team and the survey team and 2) the		
		management guidelines for future habitat and ecosystems.		
2	ASEAN Flyway Network Waterbird	Thailand is a partner of the East Asian-Australasian Flyway	Asian Center for	1 year
	Census and Wetland	Partnership (EAAFP) since 2010. Don Hoi Lot-Ban	Biodiversity	(2019)
	Assessments 2019: Don Hoi Lot-	Khlongkhone or Don Hoi Lot Ramsar site is to be submitted		
	Ban Khlongkhone Wetland (New	as a new EAAFP Flyway Network site in 2020. The sites are		
	Se)	designated under the specifications of the Partnership.		
		Among the many species supported by Thai wetlands, the		
		region has been recognized for its numerous sightings of		
		non-breeding Spoon-billed Sandpipers, a Critically		
		Endangered shorebird that migrates along the EAAF. Don Hoi		
		Lot-Ban Khlongkhone supports 133,599 waterbirds. There		
		are 13 species of globally threatened and near threatened		
		species as per the IUCN global Red List of Threatened		
		Animals such as Great Knot (EN), Black-tailed Godwit (NT),		
		Asian Dowitcher (NT), Eurasian Curlew (NT), and Painted		
		Stork (NT), etc. In conducting this study, there were no more		
		than 20 participants. Initially, there may be obstacles in the		

No.	Name of research project	Research concept	Funding	Perio	od
		survey as understanding the forms of data recording and			
		surveying and counting bird populations, which are regarded			
		as the strengths of a long and continuous survey team. The			
		challenging issues encountered in this work are: 1)			
		understanding communication between the database			
		management team and the survey team, and 2) the			
		management guidelines for future habitat and ecosystems.			
3	Review and Update on the Status	The project will conduct a review of existing information	IUCN Asia under the	1	year
	of Key Invasive Alien Species in	regarding the status of key IAS in their wetland sites (Kaper	Mekong WET	(2021)	
	Wetlands of The Lower Mekong	Estuary/Laemson Marine National Park/Kraburi Estuary	Program		
	Basin	Ramsar site, Bang Prakong River and Songkram River Ramsar			
		Site). Information to collect include all published scientific			
		articles, technical reports, country policy and management			
		documents regarding IAS and the focal species. The project			
		will then carry out field surveys and community interviews			
		to collect new data about IAS. We will focus our study on			
		four key invasive alien species: Giant mimosa (Mimosa pigra),			
		Water hyacinth (Eichhornia crassipes), Golden apple snail			
		(Pomacea canaliculata) and Suckermouth catfish			
		(Hypostomus plecostomus). In addition to these focus			

No.	Name of research project	Research concept	Funding	Period
		species, through field surveys the country teams will		
		identify other IAS that are important at each wetland site.		
		Field observations and new data collection will focus on		
		the following topics: 1) Status of invasion, including		
		distribution maps for IAS, only qualitative assessment of		
		abundance and trends based on interviews with local		
		people are included since quantitative assessment of		
		abundance and distribution mapping for these two species		
		are impossible to achieve within the time frame of the		
		study, 2) Current IAS management practices being		
		implemented at each wetland site, 3) Technical capacity of		
		the wetland sites regarding IAS control and management, 4)		
		Impacts of IAS on the livelihoods of local communities		
		(both negative and positive), 5) Presence of other IAS that		
		are important at each wetland site, 6) Climate-related issues		
		with regard to IAS management, and 7) Consultations with		
		wetland managers and government agencies responsible for		
		IAS control.		

Name: Asst.Prof.Dr. Sukanya Sereenonchai

No.	Name of research project	Research concept	Funding	Period
1	Communication for the	This research aimed to develop a way of coexistence in	Thailand Science	2 years
	coexistence of communities	the community between people who burn and do not	Research and	(Mar.2019-
	facing haze pollution	burn agricultural residues, and figure out communication	Innovation (TSRI)	Feb.2021)
		methods developed from the practical community way	and the Office of	
		under the concept of participatory communication. Mixed	the Higher	
		research approaches in terms of psychology, economics	Education	
		and communication were employed based on the	Commission (OHEC)	
		communities' ways of life and culture to understand		
		people's thoughts and factors affecting their behaviors.		
		Through the survey of public risk perception, awareness		
		and willingness to pay (WTP) for haze management in		
		Chiang Mai Province, including participatory		
		communication intervention at Ban Thap and Pang Hin		
		Fon Sub-Districts, Mae Chaem District, Chiang Mai Province		
		to manage the haze problem, to synthesize and propose a		
		communication model for haze management that is		
		consistent with the community context.		

No.	Name of research project	Research concept	Funding	Period
2	Integrating Stakeholders on Solid	The objectives of this study are to: (1) study the solid	Thailand Science	1 year 73
	Waste and Wastewater	waste and wastewater (SW-WW) management plan	Research and	days
	Management Plan Development	integration between local government officials in Sa Kaeo	Innovation (TSRI)	(Aug.2019-
	in Sa Kaeo Special Economic	Special Economic Zone (SEZ) and adjacent districts; and		Nov.2020)
	Zone and Adjacent Districts	(2) develop cooperation SW-WW management plan. This		
		study has collected and analyzed the SW-WW		
		management plan from central and local governmental		
		offices and study their linkage. The researchers develop a		
		SW-WW management plan with participation from local		
		community leaders, local government officials,		
		entrepreneurs and professionals. Creating a participatory		
		integrated SW-WW management plan for all sectors		
		consisting of four steps: Step 1 Building an understanding		
		of policy and plan requirements; Step 2 Collect policy		
		data and related roadmaps; Step 3 Plan development with		
		participatory process, through participatory action research		
		process having methods for plan analyzing by applying		
		Objectives and Key Results (OKRs), SWOT Analysis, TOWS		
		Matrix, Eisenhower Method, Risk Assessment, Check List, as		
		well as information from local surveys; and Step 4		

No.	Name of research project	Research concept	Funding	Period
		Integrated SW-WW management plan was proposed to the		
		stakeholders to achieve the practical plan.		
3	Behavioral insights of farmers	This research focuses on: 1) finding alternatives and	Mahidol University	1 year
	and surrounded people to	assessing the cost-return in utilization of rice straw; 2)	(Fundamental	(Oct.2020-
	develop a zero-burn agricultural	assessing exposure to air pollution; 3) assessing the	Fund: Basic	Sep.2021)
	community	willingness to pay for non-burning straw management and	research)	
		the willingness to receive compensation for a behavior		
		change toward non-burning straw management; 4)		
		analyzing factors affecting rice straw management		
		behavior; 5) communicating alternatives and cost-returns		
		for utilizing rice straw, including communicating the results		
		of soil physical and chemical properties analysis; and 6)		
		analyzing lessons-learned, success factors and synthesizing		
		policy advocacy to drive the zero-burning agricultural		
		community in conjunction with the agricultural way of Thai		
		society.		

Name: Asst.Prof.Dr.Sureewan Sittijunda

No.	Name of research project	Research concept	Funding	Period
1	2,3 Butanediol and succinic acid	The objective of this study was to isolate the succinic acid-	National Research	1 year
	productions from sugar industrial	producing bacteria from rumen fluid. Rumen fluid was	Council of Thailand	(2020-2021)
	wastes and prototype of	collected by stomach tube technique. Then transfer to	(NRCT))	
	synthesis and properties of	serum bottle, capped with a rubber stopper. The initial pH		
	Poly(butylene succinate) by	of the rumen fluid was 6.80. The rumen fluid was kept at		
	melt polycondensation	room temperature before using it as the inoculum source.		
		The experiment was conducted using a serum bottle. Five		
		ml of rumen fluid was added into the enrichment medium		
		that contained 20 g/L glucose, 3 g/L K_2HPO_4 , 5 g/L yeast		
		extract, 2 g/L NaCl, 2 g/L (NH ₄) $_2$ SO $_4$, 0.2 g/L CaCl $_2$.2H $_2$ O, 0.4		
		g/L $MgCl_2.6H_2O$, and 15 g/L $MgCO_3$ (Lee et al., 2005).		
		Flushing with nitrogen gas to create an anaerobic condition		
		and shake at 150 rpm at 37 °C. After 72 h, 50 µ L of samples		
		were spread onto an enrichment agar. Plates were		
		incubated at 37 °C for 72 h under anaerobic conditions.		
		Single colonies were selected, streaked on enrichment agar,		
		and incubated in the same condition as previously stated.		
		Subsequently, single colonies were picked and transferred		

to a screening medium for succinic acid production. Isolates	
with succinic acid-producing ability, as evidenced by a clear	
zone around the colony, were selected. The isolate that	
gave the highest clear zone was selected to identified	
species using 16s rDNA.	

Name: Lect.Dr. Boonlue Kachenchart

No.	Name of research project	Research concept	Funding	Period
1	Precision system of water	This research is an integrated approach to precisely study	National Research	3 year
	resource management and yield	the efficient use of water in sugarcane production.	Council of Thailand	(2019-2021)
	estimation for sugarcane	Research conceptual framework consist of the study of	(NRCT))	
	cultivation	evapotranspiration and single/dual crop efficiency by		
		weighting lysimeters and energy balance Bowen ratio		
		(EBBR) method and the development of crop growth		
		model and to estimate sugarcane yield of Khon Kaen 3		
		(KK3) cultivar by using high-resolution unmanned aerial		
		vehicle (UAV). The results of such basic research, it will		
		lead to the development of a precision water		
		management model that finds optimization between a		
		plant's water demand and yield response. The output of		
		research is water irrigation schedule function obtained		
		from relationship among plant water status, soil water		
		status and climate. The ultimate goals are enhancing water		
		productivity and eco-efficiency of water resources for		
		support supply chain in cane and sugar industry.		

2	Blue carbon net sequestration in	The objective of research is to account greenhouse gas in	National Research	1 year
	seagrass ecosystem for	seagrass ecosystem. All various carbon pools i.e.biomass,	Council of Thailand	(20212022)
	sustainable management base	sediment, and greenhouse gas flux will be collected and	(NRCT))	
	on blue economy of east coast	analyzed what is source and sink. The ecological services		
	Thailand	and economic value, blue economy also evaluate. The		
		ultimate goal is achievement sustainable development by		
		gain co-benefits and balance between resources use and		
		conservation in blue carbon habitats.		

Name: Lect.Dr.Narin Boontanon

No.	Name of research project	Research concept	Funding	Period
1	Instrument for measurement	In trap water treatment process, algae and diatom are	Metropolitan	1 Year
	and monitor algae	the unexpecting problems on treatment process cause	Waterworks Authority	(2018-2019)
	contamination in raw water of	of odor and toxicity of the water as well as the treatment	(MWA)	
	water treatment process	device. Thus, fast and accuracy device for measuring and		
		monitoring of those algae and diatom in raw water is		
		needed in term of prevention. Using optical sensors and		
		microcontroller are allowed for measuring and warning		
		simultaneously which appropriate for protecting the		
		system and treated water quality.		
2	The development of household	Organic waste from household is the largest portion of	Pre-Seed Fund, Mahidol	1 Year
	organic waste digester for	the community waste. According to the limiting of waste	University	(2019-2020)
	commercialize	management, it can cause of the contagion,		
		environment and so on. Thus, the idea of treat at source		
		was use for manage the household organic waste using		
		automatic waste degradation. The project was focus on		
		the development of the prototype and turn to the		
		commercial ready to launch the market and		
		environmentally friendly device.		

No.	Name of research project	Research concept	Funding	Period
3	Research and development of	The research was focused on design and create a	National Research	1.5 Year
	innovation for reduce and utilize	portable photosynthetic sensor using many processing	Council of Thailand	(2021-2022)
	greenhouse gas (CO ₂) in the	sensors as were required in the influential plant	(NRCT)	
	biological matrices	photosynthesis factors. The sensor was designed to		
		display real-time value all parameters and the net		
		photosynthesis via LCD monitor. In evaluating, the study		
		compared the value from each sensor with standard		
		gases and commercial tools then analyzed with		
		statistical methods. The net photosynthesis obtained		
		from the sensor was compared to the reference data		
		collected using a commercial instrument in the same		
		plants. The results of analysis shown that all sensors and		
		the portable photosynthetic sensor had a high precision		
		and accuracy similar to commercial instrument.		
		Moreover, this invention can be taking place an		
		expensive commercial instrument and can be used as a		
		tool for reduce an atmosphere CO_2 effectively.		
4	Prototype innovation of grease	The residual of fat, oil and grease (FOG) from cooking	Agricultural Research	2 Years
	trap for FOG (fat, oil and grease)	and food preparing is a source of environmental	Development Agency	(2021-2023)
		problems. Although, the grease trap is an optional for	(Public Organization)	

No.	Name of research project	Research concept	Funding	Period
	elimination from food	prevent those impact, however, its need to maintenance	(ARDA)	
	processing and food waste	frequently to keep its functional. The prototype		
		innovation of grease trap will let the user worry free for		
		taking care or maintenance using self-degradation assist		
		by mechanical and biological processes.		
5	Development of modernize	The modernize electric generator is a state-of-the art of	National Research	1 Year
	electric generator for	generator which can reduce the impact of human	Council of Thailand	(2021-2022)
	sustainable energy	health, cost of energy and environment from the energy	(NRCT)	
		production. Furthermore, this device can be use as the		
		energy conservation from the waste of wind from		
		agriculture and industrial sectors.		

Name: Lect.Dr. Piangjai Peerakiatkhajohn

No.	Name of research project	Research concept	Funding	Period
1	Development of Metal Oxide	Hydrogen can be an alternative renewable energy	- Mahidol University,	3 years
	Nanomaterials for Hydrogen	source to address such global energy and	Thailand	(2021-2023)
	Production from Wastewater in	environmental issues owing to the features of zero		
	Artificial Photosynthesis	greenhouse gas emission and high energy density	- National Nanotechnology	
		when using as the energy carrier. Among various	Center (NANOTEC),	
		approaches for hydrogen production, a	Thailand	
		photoelectrochemical (PEC) system is a promising		
		process that directly splits water into hydrogen and	- Australian Research	
		oxygen using renewable solar energy.	Council (ARC), Australia	
		Nevertheless, limited studies have reported the bifunctional PEC concept, driven by simultaneously processing hydrogen production and organic pollutant degradation in wastewater. This research aims to develop novel metal oxide photoelectrodes in artificial photosynthesis system		
		photoelectrodes in artificial photosynthesis system which can successfully degrade pollutant in		

wastewater, and simultaneousl	y generate	
hydrogen under the self-bias condition	n.	

Name: Lect.Dr.Witchaya Rongsayamanont

No.	Name of research project	Research concept	Funding	Period
1	Formulating bio-based	The bio-based dispersant formulating from the biological	-	-
	dispersant for oil spill removal in	substance name biosurfactant. The biosurfactant is		
	seawater	promising as a novel substance which had more		
		advantages over the chemical substance. It had low		
		toxicity, more compatible, tolerance at extreme		
		conditions. The research aims to formulate the dispersant		
		without using the chemical solvent. The surfactant		
		formulating concept bring to use as a formulation tool.		
		Moreover, the 3D box experiment will perform to		
		stimulate the real application of the oil spill remediation.		