Modulating the Co-CoO_x Interface in Co-Nb-CeO₂ Catalysts through Controlling Titration Rate for Enhanced Performance in Water-Gas Shift Reaction

J.S Bang¹, H.M. kim², and D.W Jeong^{1,3*}

¹Department Environmental Engineering, Changwon National University, Changwon-Si, Gyeongsangnam-Do, Republic of Korea
²Industrial Technology Research Center, Changwon National University, Changwon-Si, Gyeongsangnam-Do, Republic of Korea
³Department of Smart Environmental and Engineering, Changwon National University, Changwon-Si, Gyeongsangnam-Do, Republic of Korea

ABSTRACT

Hydrogen is proposed as a promising alternative to address environmental issues from fossil fuels. In the waste gasification process, the Water Gas Shift (WGS) reaction is crucial for producing high-purity hydrogen. The WGS reaction are divided into the two steps as high temperature-water gas shift (HT-WGS) and low temperature-water gas shift (LT-WGS) reaction due to thermodynamic limitation and kinetic. Previously, the Co/Nb-CeO₂ catalyst for HT-WGS were designed prepared with co-precipitation method, but the effect of titration rate which is an important parameter relating to catalytic performance was not investigated. In this study, the different titration rates were applied to prepare Co/Nb-CeO₂ catalysts by controlling the addition rate of precipitant (KOH) from 1 mL/min to 25 mL/min. To understand the physicochemical properties of the catalysts various characterization techniques were used such as TEM, XPS and H₂-TPR analyses. As a Result, among the prepared Co/Nb-CeO₂ catalysts, 5-Co/Nb-CeO₂ prepared with precipitant addition rate as 5 mL/min exhibited the highest activity, with a CO conversion of 97.8% at a temperature of 450°C and a gas hourly space velocity of 315,282 h⁻¹. Moreover, long-term thermal stability was observed for the 5-Co/Nb-CeO₂ catalyst was tested because of the favorable interactions between the CeO₂ and Co-CoO_x pairs. In contrast, the other catalysts underwent faster deactivation because of faster carbon deposition and pore blockage, ultimately limiting the H₂ production activity.

Keyword: Water-gas shift/ Hydrogen/ Co-Cox pairs/ Metal-support interactions/ Waste-derived syngas

*Corresponding Author: D.W jeong E-mail address: dwjeong@changwon.ac.kr