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ABSTRACT

The influence of different biomasses on lignin extraction impacts the thermal stability of lignin. Four extracted
lignins from the soda pulping process were prepared from agricultural wastes, including bagasse, coconut husk, rice
straw and corn stover. Kinetic and thermodynamic analyses were utilized to compare and investigate the thermal-
oxidative stability behavior of all lignins. Experiments were conducted using the non-isothermal method for four
heating rates with a thermogravimetric analyzer. The Friedman, FWO, KAS and Starink kinetic methods were used
to investigate the oxidative kinetics of lignins. Thermodynamic parameters involving enthalpy (AH), Gibbs free
energy (AG) and entropy (AS) were considered for observing thermal characteristics. Thermal degradation of lignin
consists of three consecutive regimes: moisture content, lignin degradation and decomposition of residues. All kinetic
models showed average activation energies between 132.89 and 144.52 kJ/mol, 109.75 and 121.72 kJ/mol, 156.62
and 167.98 kJ/mol and 160.11 and 171.64 kJ/mol for BG, CH, RS and CS, respectively. The coefficient of
determination revealed that all models are promising kinetic methods for calculating kinetic parameters. The
fluctuation of kinetic and thermodynamic parameters showed that the thermal oxidative degradation of lignin was a
complicated mechanism. The conversion process corresponds to a non-spontaneous endothermic reaction. The results
provide valuable information to deeply understand the thermochemical conversion for characterizing the thermal
stability of lignins.
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1. INTRODUCTION

The production of agricultural waste increases as a result of the growing worldwide population and
rising demand for agricultural products [1]. Agriculture is the most important sector to drive the Thai
economy with high domestic and overseas demands for rice, sugar, coconut and corn [2]. The production
of these agricultural wastes is created by the harvesting operations and the food processing industries.
Currently, burning is an efficient method for removing excessive residues due to its inexpensive, rapid and
uncomplicated approach [3]. The combustion process releases particulate matter, black carbon and
greenhouse gases (GHGs) into the atmosphere, affecting air pollution, climate change and human health.
Therefore, managing agricultural residues illustrates the greatest challenge for waste management in
agricultural countries. Converting agricultural waste into high value products, including polysaccharides
(cellulose and hemicelluloses) and lignin as aromatic polymers, remains economical, sustainable and
advantageous for humans and the environment [4].

Lignin demonstrates excellent antioxidant properties; it has been promisingly utilized in many
applications, such as film fabrication, thermo-oxidation stabilizers, and polymer additives [5]. Thermal
stability and decomposition profiles are normally evaluated via thermal gravimetric analysis (TGA). But
the results of TGA thermograms cannot disclose the reaction mechanisms during thermal degradation.
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Kinetic and thermodynamic analyses provide beneficial information through kinetic and thermodynamic
parameters for revealing the mechanisms and thermal degradation behavior. Kinetic analysis focuses on the
determination of kinetic parameters such as activation energy (E) and pre-exponential factor (A). The
obtained kinetic parameters are calculated from different kinetic models. Model-free methods are generally
used for predicting kinetic parameters. Model-free techniques have isoconversional bases. This method
works well for uncovering intricate chemical reaction processes that involve multiple elementary steps in
their mechanisms. The rate of reaction is related to temperature and the kinetic parameters are assessed at
a constant conversion degree [6]. Model-free approaches can be categorized into two main categories:
differential and integral kinetic methods. The differential kinetic methods such as Friedman produce the
most precise kinetic findings, but they have a defect in that noise from data amplification through numerical
differentiation may influence accuracy [7]. The methods of studying material stability that have gained
widespread acceptance include the integral isoconversional Kinetics of Flynn-Wall-Ozawa (FWO),
Kissinger-Akahira-Sunose (KAS), and Starink. However, because of the Arrhenius integral's
oversimplified estimation and the activation energy constant assumption used in their derivation, these
kinetic techniques would lead to systematic calculation errors [8]. Thermodynamic analysis is used to
forecast the possibility of a chemical or physical reaction, which includes occurring on its own initiative,
based on the distribution of energy contained in reactants and products. Thermodynamic parameters
involving enthalpy (AH), Gibbs free energy (AG) and entropy (AS) are utilized to describe spontaneous
reactions, absorbed or released energy, stability determination as well as the degree of disorder [9]. The
study of oxidative degradation Kinetics in lignin in terms of characteristics, kinetic mechanism,
thermodynamic analysis and comparison between different kinetic methods is limited and not well
understood.

Determining the thermal oxidative stability of lignins derived from bagasse, coconut husk, rice straw,
and maize stover was the primary objective of this study. Kissinger-Akahira-Sunose (KAS), Flynn-Wall-
Ozawa (FWO), Friedman, and Starink models' kinetic parameters were predicted using the TGA and DTG
results of soda lignin degradation, which were based on the kinetic analysis. Activation energy data were
used to determine thermodynamic parameters such as entropy (AS), Gibbs free energy (AG), and enthalpy
(AH). The results of thermodynamic and Kinetic assessments included comparisons of various Kinetic
techniques, kinetic mechanisms, and features of thermal degradation. The variance of lignin compounds in
these various biomasses was also seen by analyzing a number of other factors, including chemical
composition, molecular structure, and glass transition temperature.

2. METHODOLOGY
2.1 Materials and methods

Four agricultural residues were used to extract the soda lignin. Coconut husk (CH), rice straw (RS)
and corn stover (CS) were collected from local fields in Thailand and bagasse (BG) was obtained from the
sugar factory in the central region. Dry samples were carried out in an oven at 50 °C for 4 days to remove
the moisture content and crushed with a laboratory grinder mixture. The particle size of lignin samples was
controlled to less than 3 mm with a sieve and stored at room temperature in zip lock plastic bag.

2.2 Lignin dissolution and precipitation

Soda lignin was prepared by the soda pulping process utilizing an alkaline hydrolysis based on
sodium hydroxide (NaOH). Four samples were mixed with 3% (w/v) of NaOH solution at a ratio of solid
to liquid of 1:12 (w/v). The reaction temperature was adopted at 121 °C for 1 h for reaction time and the
pressure was keptat 15 psi. Next, fibers and excess pulp residues were separated by vacuum filtration
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several times. Black liquor had a high alkali content, showing a pH of approximately 11. The precipitation
of lignin was carried out by adding 20% (v/v) of sulfuric acid to black liquor under magnetic stirring. The
amount of sulfuric acid in black liquor was controlled by reaching pH 2 and samples were set for 1 day at
25 °C. Subsequently, precipitated lignin was filtrated to remove excess water with a centrifugation speed
of 4000 rpm and a time of 15 minutes. The washing process with hot water at 60 °C was adopted many
times to neutralize the pH of lignin. Finally, all soda lignins were dried for 5 days in an oven at 55 °C to
reduce moisture and then milled to powder. Extraction processes are expressed in Figure 1.

2.3 Thermogravimetric analysis (TGA)

The thermal oxidative degradation characteristics and Kinetic analysis of soda lignins were tested by
a thermogravimetric analyzer (TGA/DSC Mettler-Toledo). The weight loss profile was a function of mass
change under increasing temperatures. Approximately 10 mg of lignin was allowed to stabilize at 25 °C in
an alumina crucible. Thermal oxidative degradation behavior was achieved at temperatures from 25 to 800
°C under heating rates of 5, 10, 20 and 30 °C/min. TGA results are not only used to describe data on weight
loss but also to determine kinetic parameters. To ensure reproducibility, a minimum of three replications
were conducted.

2.4 Kinetics analysis

Evaluating the reaction mechanism of lignin degradation becomes more difficult because of the
complicated chemical composition. The model-free isoconversional methods, including Friedman, Flynn-
Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink were employed for approximating the
activation energy and pre-exponential factor. Generally, when biomass is thermally degraded, a number of
parallel and simultaneous processes take place and the reaction is described in Eq. (1).

Biomass (s) — Volatile (g) + Residue (s) @Y

The reaction rate is dominated by the conversion function f (a) and can be defined by the following
equation:

da (i)
— = Ae\RT f(a) 2)
dt
The terms of E, A, R, T and t represent the activation energy of reaction, pre-exponential/frequency
factor, gas constant, absolute temperature and reaction time, respectively. The instantaneous conversion
ratio (a) of biomass can be expressed as:
m; —my

=+ 't 3
= 3)

Where m, is the mass at a considered time, m; and m; designate initial mass and final mass. A

constant heating rate (8 = dT/dt) for non-isothermal condition is added to Eqg. (2), the new function can
be generated as follows:

da _ Ee(zf—r) £(@) 4)
ar B
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Based on Eq. (4), rearranging and integrating can be expresses as:

d 4 T (E AE X AE
9@ = Jy 5 = 5 e ar = G0 ax =58 v ”

Biomass Bagasse, Coconut husk, Rice straw and Corn stover

|—> Drying Remove moisture at 50 °C for 4 days

|—~ Soda NaOH 3% at 121 °C for 1h

process

B.laCk Lignin-rich fraction

Liquor
= Precipitation | H,SO, 20 % until pH 2
Fibers and e &
residues

L' Centrifugation | 4000 rpm at 15 min
Cellulose, hemicellulose and excess pulp residues
l_. Washing Hot water at 60 °C

Lignin | Dry 60 °C 5 days

Acid solution

H,SO, residue

Figure 1. Schematic diagram of lignin extraction from agricultural residues.

The term g(a) is the reaction model function of integral form and p(x) represents the Arrhenius
integral/temperature integral function. It has no analytical solution except utilizing different approximation
approaches for determination [10].

2.4.1. Friedman method

The assumption of Friedman method proposes the conversion function f(a) will be constant. This
indicates that thermal degradation depends on the mass loss rate but is not influenced by temperature [11].
By taking natural logarithm of Eq. (4), Friedman differential isoconversional method can be obtained [12]:

In (Z—f) =In [ﬁ (z—‘z)] =inA+mn(f(a)- % (6)

Plotting In(da/dt) against 1/T for a specified conversion value provides the slope and — E /R can
be evaluated from a slope.

2.4.2. Flynn-wall-ozawa (FWQO) method
FWO applied Doyle’s approximation at Inp(x) = —5.3305 — 1.051x. Based on the method
developed by FWO, it can be expressed as follows [13,14]:

AE
g(@)R

) —5.3305 — 1.0516 (i) (7

In(B) = ln( 7T
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Since In(AE/g(a)R) keeps constant, the relationship of In(f) relates to 1/T to offer a linear
function. The E can be determined by the slope of this line —1.0516 (E /RT).

2.4.3. Kissinger -Akahira -Sunose (KAS) method

This integral isoconversional method is commonly used in the comparative kinetic study of several
materials. The assumption of KAS method fixed the value of the conversion and applied Doyle
approximation for substituting the temperature integral function [15]. The general equation of KAS is
presented in Eq. (8) [16,17].

n (ﬁ) =n (E;fa)) - If_T ®)

Similar as FWO method, the plot of In(8/T?) versus 1/T provides a linear function. The slope of
this line equals to —E/RT.

2.4.4. Starink method

Starink considered both FWO and KAS kinetic approaches and proposed a more accurate Kinetic
method by combining both FWO and KAS with correct approximation [18,19]. Starink method cab be
express as follow [20]:

a=1n(h) = n () - 0008 (1) - 0312 ©

The slope of In(B/T1?) versus 1/T give a linear function and E can be achieved from the slope of
—1.0008(E/RT).

2.5 Thermodynamic analysis

Kinetic information from Friedman, FWO, KAS and Starink kinetic models is utilized to estimate
the parameters of thermodynamic in various extracted lignins. The frequency factor can be obtained from
Eqg. (10). Thermodynamic determinations, involving the changes of enthalpy (AH), Gibbs free energy (AG)
and entropy (AS) are presented in Eq. (11) to (12) [21]:

E 1
A= |BEexp|—= ] > (10)
RT,)| RT,
AH = E —RT (11)
KT,
|4
A (BH —4G)
= (13)
Tp

Where K represents the Boltzmann constant of 1.381 x 1072 (J/K), h corresponds to the Plank
constant of 6.626 x 107> (J-s) and T, denotes the temperature (K) of the DTG peak.
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3. RESULTS AND DISCUSSION
3.1 Yields of lignin extraction

Four different biomasses of bagasse (BG), coconut husk (CH), rice straw (RS) and corn stover (CS)
were selected to extract lignin through soda pulping. The percentage yield of lignin from different sources
was determined by the gravimetric method and the results are presented in Table 1. CH yielded the highest
lignin level of 38.51%, followed by BG, RS and CS with vyields of 31.34%, 19.37% and 15.85%,
respectively. Regarding the separation of fiber in black liquor, rapid clogging was found in rice straw and
corn stover using filtration. However, this problem could not be observed in bagasse and coconut husk.

3.2 Thermogravimetric analysis

The thermogravimetry (TG) and derivative thermogravimetry (DTG) representing mass loss and
degradation rate with respect to temperature under the air are shown in Figure 2. The first regime under
100 °C could be attributed to moisture evaporation, which was relatively small (4-5%). The second regime
described the major degradation stage of lignin. It was observed predominantly in the range of 180400 °C.
This can be assigned to the degradation of lignin showing dehydrogenation of the hydroxyl group of benzyl
and the fragmentation of a-O-4 and 3-O-4 ether bonds at inter-unit linkages [22]. The third regime of lignin
degradation occurred at a temperature above 400 °C. This segment occurred slowly to form char and various
volatiles (Hz, CO2, CH4 and hydrocarbons) were produced and finalized with char combustion in the
presence of oxygen [23-25]. The ash residue could be observed at the final stage of thermal oxidative
degradation. The amount of ash from RS and CS samples was higher than that from BG and CH around 1—
2%. The formation of these inorganic salts and mineral components influences

The amount of lignin ash and its thermochemical properties [26]. According to this study, low ash
formation was observed for all four lignin samples. This indicated that the washing process in this study
was effective enough to remove contaminants. The thermal degradation of lignin is obviously controlled
by variations in heating rates. As shown in Table 2, shifting to a higher temperature was evident with
increasing heating rates from 5 to 40 °C/min. The shifting temperature is attributed to the effect of heat
transfer limitations. At high heating rates, samples cannot maintain a homogeneity of temperature between
core and surface. It extends the temperature gradients and results in faster devolatilization [27-29]. The
effect of different heating rates is also significant on the yield of residue (ash or char) at the end of thermal
degradation. Results showed that the residue after thermal degradation using heating rates of 5, 10 and 20
°C/min yielded ash, while increasing the heating rate up to 40 °C/min only char was observed at the end of
the degradation process. Thermal oxidative degradation of lignin requires a period to complete the
degradation step for converting char to ash. At the highest heating rate of 40 °C/min cannot provide
sufficient time to complete the combustion process [30].
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The linear regression plots of four model-free methods for all lignins are shown in Figure 3. The
average activation energy (E) values are summarized in Figure 4. The linear correlation coefficient
(R?) is typically used to compare several kinetic models with respect to the acceptable accuracy of the
results. High R? signifies the optimal kinetic model with experimental data. Moreover, the causes of poor
fits may be due to the high heterogeneous secondary formation of char and ash residues [8,31]. The results
of thermal degradation in BG, CH, RS and CS lignins in this study show in Table 3 that high R? values were
apparent using the Friedman, FWO, KAS and Starink methods. Therefore, all kinetic models were
considered promising methods to apply for determining the stability of lignin from different biomasses at

a high level of acceptable accuracy.
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The combination of Friedman, FWO, KAS and Starink kinetic models to determine the average E
values is shown in Figure 4. By comparing the individual biomasses, the horizontal lines represented the
means of the E throughout the whole degradation process. These lines indicated that extracted lignin from
CS (164.05 kJ/mol) and RS (159.96 kJ/mol) had higher activation energies than BG (136.24 kJ/mol) and
CH (114.01 kJ/mol). With an increase in conversion, the degradation behavior of all lignin samples could
be observed to indicate that high energy requirements occurred in the beginning and decreased continuously
until the end of the degradation process. The thermal degradation profiles of combination kinetic models
also confirmed that the thermal oxidative degradation of soda lignin was the result of multiple reaction
systems.

The statistical analysis for comparing the variances of four kinetic models showed that at the p =
0.05 level of significance, the critical F-distribution was adapted with a 95% confidence interval and
correlated with the right tail area. The error degree of freedom connected with the number of observations
was 64, whereas the treatment degree of freedom related to the number of kinetic models was 3. The critical
F-distribution (Fp=0.0s3,64)) Was 2.7481 and the F-test results of BG (0.1188), CH (0.1634), RS (0.0717) and
CS (0.0575) were lower than the critical value, accepting them for analysis of statistical data. It can be
stated that there is no difference in the average of these four kinetic methods within the test population. The
A results of soda lignins from four different biomasses are exhibited in Table 1. The A value of CH lignin
degradation at a = 0.2 was 10'® s, while BG, RS and CS lignins were degraded at different o of 0.35 and
showed A values between 10?*and 10%? s, The value of A is less than 10° s, indicating a surface-control
reaction but the A value is higher than 10° s, meaning that the reaction is independent of surface area
[30,32].

3.4 Thermodynamic analysis

According to thermodynamic analysis, Kinetic parameters (E and A) of lignin degradation derived
from four model-free methods were applied for thermodynamic parameter determination (Table 1). The
AH corresponds to a specific amount of heat energy that is necessary for degradation to break the
heterometric linkages in the lignocellulosic biomass structure. The order of the average AH from lower to
higher is as follows: lignin CS > RS > BG > CH. A small AH value is connected with the formation of the
transition state at a lower energy barrier [33]. This means that CH lignin requires the lowest energy demand
to degrade when compared with the others. The positive AH were found during lignin degradation. This
suggests that the energy required for the lignin thermal decomposition is a naturally endothermic process.
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Figure 3. Linear regression plots of the Friedman, FWO, KAS and Starink models.
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The direction of the chemical process and the energy change throughout the formation of the
activated complex are observed using the AG value [34]. The variation of AG at the conversion extent of
0.1-0.9 could be observed in Table 1. The average AG for BG, CH, RS and CS obtained from four kinetic
models were 163.61, 157.90, 167.99 and 167.96 kJ/mol, respectively. The greater AG value of RS and CS
pointed out that both lignins were more difficult to thermally convert than BG and CH. The positive
magnitude of AG is apparent at the thermal conversion of all soda lignins. It is evident from the results that
the thermal oxidative degradation of lignin correlates with a non-spontaneous reaction [35].

According to the higher AS degree, the substance is out of equilibrium with itself, resulting in an
increasing degree of disorder in the system [36]. Results from Table 1 showed that thermal degradation
soda lignin had a higher minus value of AS at the end of conversion. This implies that the disordered degree
of lignin is decreased after thermal oxidative degradation. In addition, the co-occurrence of both positive
and negative AS values can be observed during the process. This characteristic confirms that the specific
thermal degradation processes of lignin have complex reactions [37].

4. CONCLUSIONS

Based on the obtained data and kinetic and thermodynamic analyses, the following conclusions were
created as follows:

1. Thermogravimetric analysis showed that the thermal degradation of lignin could be separated into
three regimes, representing the moisture content, lignin degradation and decomposition of residue.

2. Friedman, FWO, KAS and Starink kinetic models were reliable for predicting the thermal stability
of lignin at an acceptable level of accuracy.

3. Rice straw and corn stover had the highest thermal stability compared to the others.

4. Thermodynamic parameters (AH, AG and AS) are obtained based on E values, revealing that
thermal degradation of soda lignins is an endothermic reaction, which corresponds to a complex mechanism
and degradation has never been spontaneous in nature.
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